

Current problems for H I studies

- Sensitivity: reaching down to $\mathrm{n} \times 10^{20}$ atoms cm^{-2} at $\sim 10^{\prime \prime}$ resolution DDO 68 + DDO 68 C

Multi-spin aspects in galaxies

- Multi-spin galaxies are galaxies with two or more distinct subsystems of differing angular momentum

Absolute value of the angular momentum is different, e.g.

- Bulge-disk systems
-IGM-ISM connection, slowly rotating gas (through gas accretion)
- High-Velocity Clouds (HVCs, connected to gas accretion?)

Normal vector of angular momentum is different, e.g.

M31, WSRT (NRAO/ AUI, • Thilker, Braun)

Multi-spin aspects in galaxies

- Multi-spin galaxies are galaxies with two or more distinct subsystems of differing angular momentum

Absolute value of the angular momentum is different, e.g.

- Bulge-disk systems
- IGM-ISM X connection, slowly rotating gas (through gas accretion)
- High-Velocity X Clouds (HVCs, connected to gas accretion?)

Normal vector of angular momentum is different, e.g.

M31, WSRT (NRAO/ AUI, • Thilker, Braun)

- Polar-ring X galaxies

Faint neutral gas

- HVCs/clouds

- Large cloud complexes and smaller clouds detected in a few galaxies ($D<50 \mathrm{kpc}$ for MW and M31)
- Mass: $10^{5}-10^{7} \mathrm{M}_{\odot}$
- How much accretion from neutral clouds?

Faint neutral gas

- Thick disks

NGC 2403
position-velocity diagrams

- NGC 891 (Oosterloo et al. 2007): $30 \%\left(\sim 1.2 \times 10^{9} \mathrm{M}_{\circ}\right.$) of the gas in extraplanar halo component
- NGC 2403 (Fraternali et al. 2002):
$10 \%\left(\sim 3 \times 10^{8} \mathrm{M}_{\odot}\right.$) of the gas in extraplanar component (+ radial flow in extraplanar component)
- Few cases studied well enough to establish presence of gaseous halo: How common are they?

Gas accretion

- Accretion of cold material needed to replenish star forming material: $3 \mathrm{M}_{\odot} / \mathrm{yr}$ (e.g. Bothwell et al. 2011)
- Infall of low-metallicity gas (0.1 solar) needed to explain stellar metallicity abundances (e.g. "G-dwarf problem", Wakker et al. 1999)
- Observed: $\geq 0.2 \mathrm{M}_{\odot} / \mathrm{yr}$ (HVCs, minor mergers, Sancisi et al. 2008)
- Could be much more if an unseen, cold accretion takes place (Kereš et al. 2005)
- Is it there? How can it be observed?

Nelson et al. 2014

Galactic fountain and accretion

- Neutral extraplanar gas is expected, but not with the observed lag

The HALOGAS survey

- Deep H I observations mostly biased \rightarrow how does the H I halo population look like in general? \rightarrow need for unbiased sample \rightarrow

Hydrogen Accretion in LOcal GAlaxieS Survey

$\rightarrow 22$ spiral galaxies (24 including archive galaxies)
Requirement:
-3- σ detection of column density of $10^{19} \mathrm{~cm}^{-2} \rightarrow 10 \times 12 \mathrm{~h}$ (on-source) observing time per galaxy (detection limit $2.7 \times 10^{5}(\mathrm{D} / 10 \mathrm{Mpc})^{2} M_{\odot}$)
$\rightarrow ~ 2900 \mathrm{~h}$ WSRT telescope time (finished)

Analysis using the tilted-ring model

> Tilted-Ring-Model (Rogstad et al. 1974):
parametrise rings at different radii by

- two orientation parameters (inclination, position angle)
- central position
- surface brightness (thickness)
- rotation velocity

García-Ruiz 2001

Boomsma et al. 2008

Analysis strategy

- Goals: Statistics of H I masses and kinematic description of disk, gaseous halo, H I clouds, companions
-> in-depth detailed tilted-ring modelling of each galaxy
-> search for companions/"HVCs"
-> estimates of extraplanar gas mass using global scheme

Józsa et al.

NGC 3198 (Gentile et al. 2013)

- Two disks required (thick disk scale height 3 kpc)
- Extraplanar component 10\%-20\% of total H I mass
- Lagging: $7 \mathrm{~km} \mathrm{~s}^{-1}$ (app), $15 \mathrm{~km} \mathrm{~s}^{-1}$ (rec)
- $m=2$ harmonic distortion in tangential velocity (bar-like distortion)

NGC 5023 (Kamphuis et al. 2013)

- Inhomogeneities well represented by spiral arms
- No extra vertical component required
- Vertical gradient in velocity: $\mathrm{dV} / \mathrm{dz}=-9 \mathrm{~km} / \mathrm{s} / \mathrm{kpc}$
- Inhomogeneities well
represented by spiral arms
- No extra vertical component required
- Vertical gradient in velocity: $\mathrm{dV} / \mathrm{dz}=$
-9 km/s/kpc

Stars (SDSS')

Thick disks and star formation (Heald et al.)

Star formation energy surface density

- Separation between galaxies with extraplanar H I (filled boxes) and without extraplanar H I (empty boxes) by star formation surface density

Thick disks and star formation

"Anomaleous"
gas

- Correlation between star formation rate and extraplanar gas mass
- Star formation radius and thick H I disk radius similar
- Further investigations show: estimated fountain mass correlates with extraplanar gas mass (Fraternali et al.)

Dwarfs: kinematic structure

UGC 1281

Kamphuis et al. 2014, A\&A

- $M_{B}=-15.8$
- $\mathrm{v}_{\text {max }}=60 \mathrm{~km} \mathrm{~s}^{-1}$
- $\mathrm{SFR}=0.008 \mathrm{M}_{\odot} \mathrm{y}^{-1}$
- Data consistent with no extraplanar gas

UGCA 105
Schmidt et al. 2014

- $M_{B}=-14.7$
- $\mathrm{v}_{\text {max }}=80 \mathrm{~km} \mathrm{~s}^{-1}$
- $\operatorname{SFR}=0.07 \mathrm{M}_{\odot} \mathrm{y}^{-1}$
- $\mathrm{dV}_{\text {rot }} / \mathrm{dz}=-60 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}$

- $\mathrm{dV}_{\mathrm{rad}} / \mathrm{dz}=-70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{kpc}^{-1}$
- Inwards transport $0.05 \mathrm{M}_{\odot} \mathrm{y}^{-1}$

The HALOGAS cloud catalogue (Jütte et al.)

- Use 3DBarolo to detect 117 source candidates in cubes with $1024 \times 1024 \times 900$ pixels
- Inspect data cubes to identify obvious false detections and be left with 22 clouds
- Identify potential companion galaxies as hosts in deep HALOSTARS (PI: Józsa) INT images and DSS
- The complete HALOGAS cloud catalogue consists of 8 clouds (some also rather interesting ones)

The HALOGAS cloud catalogue (Jütte et al.)

- Bulk of gas thought to be within volume defined by ~ 0.5 Rvir (e.g. Nelson et al. 2014)
- Not all cubes cover that volume
- Assume direct infall on centre (or r_{25}) with escape velocity to calculate accretion time $T_{\text {acc }}$ and correct for volume to estimate upper limit to visible H I infall
- Induced visible accretion rate always much lower than SFR
- Non-detections at the $\sim 3 \cdot 10^{5}$ M॰ level (3 3)
- Assume mass function of accreting clouds
- Upper limit: detection threshold
- Lower limit set by selfshielding density
- Accretion timescale
- ~4 Myr (crossing time of an unresolved cloud at 200 km/s)
- Accretion surface of diameter D_{25} (in both directions)

- Filling factor of H I clumps within the accretion flow
$\dot{M}<8.2 \times 10^{-2}\left(\frac{D_{25}}{10 \mathrm{kpc}}\right)^{2}\left(\frac{D}{10 \mathrm{Mpc}}\right)^{2}\left(\frac{f}{0.1}\right) M_{\odot} \mathrm{yr}^{-1}$.

Summary and outlook

- Thick disks and anomalous gas are not ubiquitous
- NGC 891 is certainly an extreme case and not the rule
- Thick lagging disks are connected to the underlying star formation properties
- Accretion of H I in the form of clouds is not the predominant form of accretion
- Special time in the evolution of the universe?
- Accretion closer to disk, mixing with fountain?
- Accretion of hot gas through fountain?
- Accretion of mostly ionised gas?
- Further, more comprehensive search required
- Stacking underway (Ianjamasimanana et al.)
- Future: MHONGOOSE
- MeerKAT (most sensitive and fastest H I telescope in near future, $1^{\circ} \mathrm{FOV}, \sim 15$ times faster than WSRT)
- 30 nearby galaxies

Ianjamasimanana et al.
rps

Warps: Properties

- Warps are ubiquitous
- Warps usually start where the optical disk fades (\rightarrow H I best tracer)
- Most warps are dominated by an $\mathbf{m = 1}$ vertical displacement (they are S-shaped)
- Warps tend to higher asymmetry (mixing with $m=0, m=2, \ldots$) and amplitude in denser environments

Rules for the behaviour of (H I-) warps
Briggs (1990) rules:

- The H I layer is planar within $\mathbf{R}_{\mathbf{2 5}}$, but
warping becomes detectable within R_{25} warping becomes detectable within R_{25}
- Co-precession inside a radius $R_{t t} \approx R_{\text {Ho }}$
\rightarrow self-gravity of the disk is important
- Differential precession beyond R_{tr} (probably retrograde decreasing precession rate)
- Indication for co-precession at large radii?

More findings

NGC 2541

- Two-disk structure in the H I disk, the warp being a transition from one orientation to the other (Kuijken 1991, Corbelli \& Schneider 1997, Józsa 2007)
- At the commencement of the warp in a few cases
i) the H I surface density profile drops (García-Ruiz 2002, van der Kruit 2007, Józsa 2007)
ii) the modelled rotation velocity changes (Corbelli \& Schneider 1997, van der Kruit 2007, Józsa 2007)
- Late cosmic infall does a reasonable job describing the observed features

R: Radius
VROT: Rotation velocity
LON: LON angle

Type: SA(s)m
Distance: 4.1 Mpc
L_{B} :
$8.1 \cdot 10^{8} \mathrm{~L}$ 。
M_{HI} :
$5.4 \cdot 10^{8} \mathrm{M}_{\odot}$

Position-Velocity (PV) diagram along the kinematical major axis.

NGC 5204: anomaleous gas

R: Radius
VRT2: Rotation velocity disk 2 WE2: Vertical velocity disk 2 ZO2: Scaleheight disk 2

SBR2: Surface brightness disk 2 VRD2: Radial velocity disk 2 DRT2: Vertical gradient of VRT2 DSP2: Dispersion disk 2

Thick disk mass: $9.1 \cdot 10^{7} \mathrm{M}_{\odot}$
NGC 5204 H I mass: $5.4 \cdot 10^{8} \mathrm{M}_{\odot}$

Status: warps

- Models invoking late infall work well to reproduce the kinematics and the morphology of (symmetrically) warped galaxies but we also observe other formation mechanisms at work (e.g. gas capture, merger)
- Indication of characteristic kinematic signatures for DM sub-structure (at the commencement of the warp) and/or anomaleous gas
- Large amounts of extraplanar gas observed in galaxies with regular warps (indication of inwards motion: NGC 5204) but not dependent on warp amplitude, might be a coincidence.
- Waiting for simulations and statistics in H I

Polar ring galaxies

- Galaxies with two distinguished, rotating sub-systems of similar size, with orthogonal angular momentum vectors. The complete system must be in equilibrium (Whitmore et al. 1990).

NGC 4650A (BVI composite, Gallagher et al.)

NGC 2685

Type:
Distance:
Luminosity L_{B} :
HI Mass $M_{H I}$:
Optical radius ${ }_{25}$:
HI radius $r_{H I}$:
(R)S0 pec
15.2 Mpc
$7.0 \cdot 10^{9} L_{\odot}$
$1.7 \cdot 10^{9} \mathrm{M}_{\odot}$
$150 " \xlongequal{=} 10.8 \mathrm{kpc}$
$420^{\prime \prime} \xlongequal{=} 31.0 \mathrm{kpc}$

INT i'-band observations
13350s on-source

- Former HI studies concluded that NGC 2685 is a polar ring galaxy
- "Helix" consisting of gas, dust, stars
- Age of helix 2-5 Gyr

NGC 2685: observations

Type:	$(\mathrm{R}) \mathrm{SO} \mathrm{pec}$
Distance:	15.2 Mpc
Luminosity $L_{\mathrm{B}}:$	$7.0 \cdot 10^{9} L_{\odot}$
HI Mass $M_{\mathrm{HI}}:$	$1.7 \cdot 10^{9} M_{\odot}$
Optical radius $r_{25}:$	$150 " \cong 10.8 \mathrm{kpc}$
HI radius $r_{\mathrm{HI}}:$	$420 \wedge 31.0 \mathrm{kpc}$

INT i'-band observations
13350s on-source

- Former HI studies concluded that NGC 2685 is a polar ring galaxy
- "Helix" consisting of gas, dust, stars
- Age of helix 2-5 Gyr
- Outer stellar- and gaseous ring, aligned with main stellar body

NGC 2685: H I tilted-ring model

velocity field
Contours:
$\mathbf{v}_{\text {sys }} \pm 0,15,30,45,60 \mathrm{~km} \mathrm{~s}^{-1}$

- Outer HI disk is planar, shares orientation with lenticular stellar body (Morganti et al. 2006)
- ~ flat rotation curve

NGC 2685, HI

1:1 merger simulation remnant, gas

- Could be remnant of a wet merger event (Barnes 2002, Naab et al. 2006)
- Should be unequal-mass merger to result in fast rotating stellar body

NGC 660

$3 \times 12 h$ WSRT HI observation

- Formed by gas capture from a companion?
(Arnaboldi \& Galetta 1993, Bournaud \& Combes 2002)
- Data show a gaseous connection/bridge to UGC 1195
$3 \times 12 h$ WSRT HI observation + image by I. Gerber

Want statistics...

- Current detailed observational HI warp studies rely on observations of less than ~100 galaxies, studies of polar ring or multi-spin galaxies less than ~ 10

But we want a statistical sample to investigate

- Environmental effects (amplitude, symmetry)
- Variations with galaxy type
- Relative spin orientation of inner and outer disk with respect to the large-scale structure
- Statistical studies: best on multi-spin galaxies is Serra et al. 2014 (on ATLAS ${ }^{3 D}$), kinematical misalignment of stars and H I in 49 ETGs

Outlook

- Upcoming H I surveys with SKA progenitors make statistical (3d !!!) studies possible, high sensitivity possible, high resolution
- ASKAP (WALLABY), MEERKAT (MHONGOOSE, MALS), APERTIF (MDS) ... SKA

