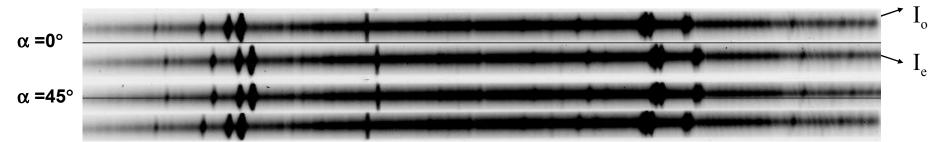

AGN spectropolarimetry on the 6-m telescope: observations and results

Afanasiev V.L., Borisov N.V., Shapovalova A.I. Special Astrophysical Observatory RAS

Radiation polarization in AGN


Possible mechanisms of polarization of radiation in AGN

- polarization of radiation in the field of a rotating black hole
- radiation transfer in optically thick accretion disk (electron scattering)
- radiation depolarization at Faraday rotation in magnetic field
- synchrotron radiation of the jet
- scattering in optically thin gas & dust cone ionization

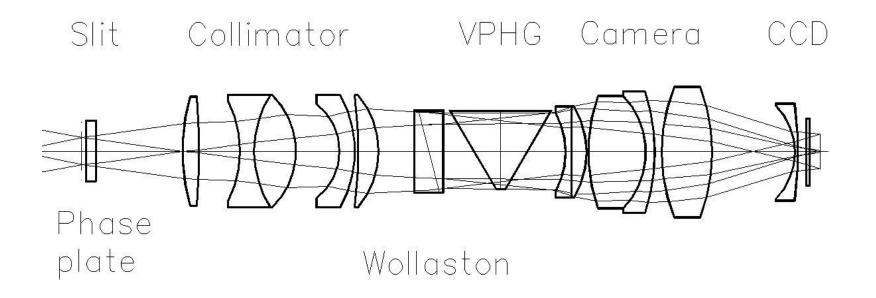
Observation tasks in optical range

- > comparison of polarization in continuum and lines, both for NLR and BLR (to check the unified model)
- > search for broad lines in polarized light in Sy2
- > dependence of polarization on redshift (L_{α} -forest)
- polarization variability jet and outflows, nonhomogeneous
 BLR, instability in accretion disk (AD)
- dependence of continuum polarization on wavelength mechanisms of scattering, estimation of magnetic field in (AD)

Polarization measurement.I

Universal focal reducer SCORPIO in spectropolarimetric mode (Afanasiev & Moiseev, 2005)

Analyzer of polarization – turnet on the fixed angle α (0° or 45°) Savart plate

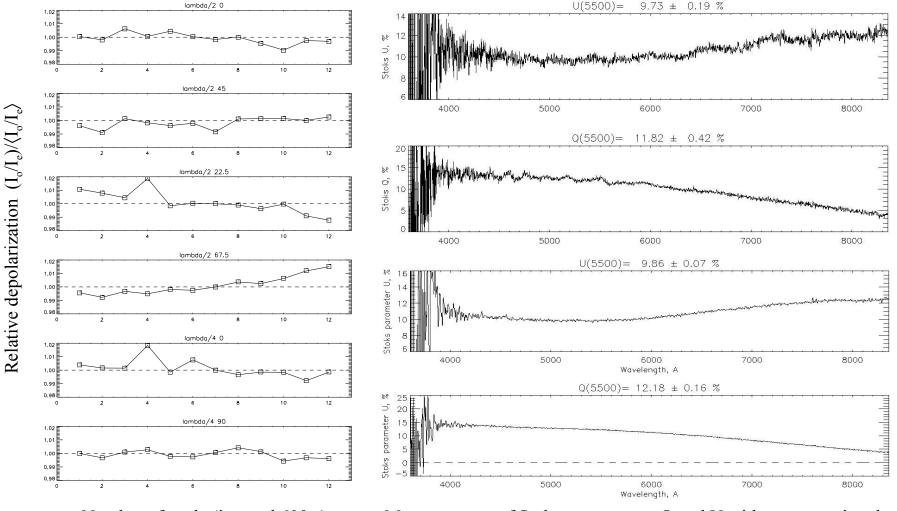

$$Q = \frac{I_o(\lambda)R(\lambda) - I_e(\lambda)}{I_o(\lambda)R(\lambda) + I_e(\lambda)} = P\cos(\varphi - \varphi_0), \quad \alpha = 0^\circ$$
$$U = \frac{I_o(\lambda) - I_e(\lambda)R(\lambda)}{I_o(\lambda) + I_e(\lambda)R(\lambda)} = P\sin(\varphi - \varphi_0), \quad \alpha = 45^\circ$$

$$P=\sqrt{U^2+Q^2}$$
, $\phi = \arctan(U/Q)/2 + const$

Instrumental polarization ~ 0.2%

Polarization measurement.II

Focal reducer SCORPIO-2, mode spectropolarimetry

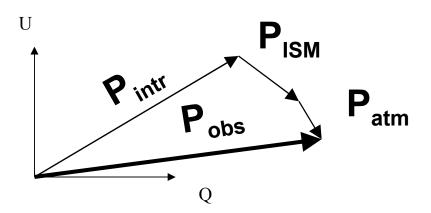


 \geq apochromatic turned phase plate $\lambda/2$ (phase variation \pm 0.03 rad)

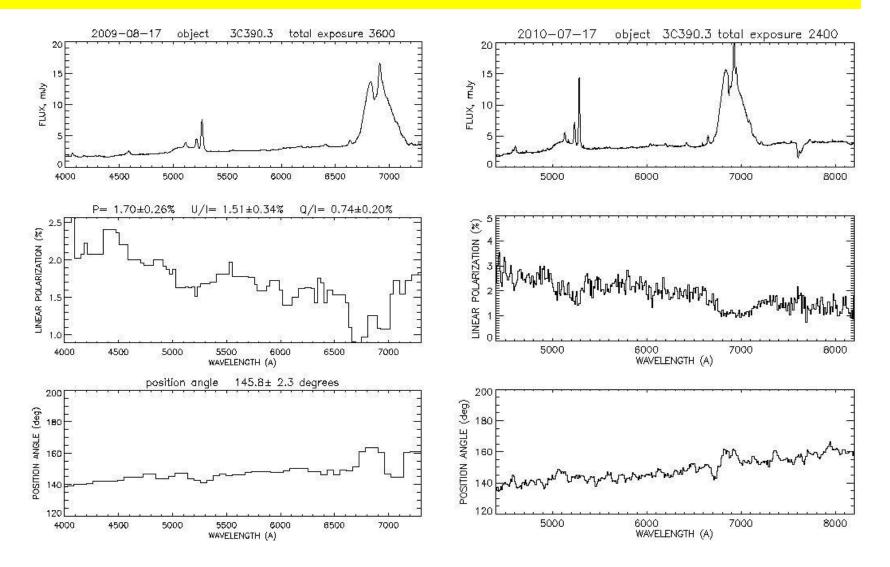
$$Q=0.5\left(\frac{Io-Ie}{Io+Ie}\right)_{0^{\circ}} 0.5\left(\frac{Io-Ie}{Io+Ie}\right)_{45^{\circ}} \quad U=0.5\left(\frac{Io-Ie}{Io+Ie}\right)_{22.5^{\circ}} 0.5\left(\frac{Io-Ie}{Io+Ie}\right)_{67.5^{\circ}}$$

Instrumental polarization : linear one < 0.05% circular one < 0.01%

Depolarization: effect of the atmosphere of Earth


Number of cycle (interval 600 s)

Measurements of Stokes parameters Q and U without correction depo-


larizations (top) and after corrections (bottom) for blazar S50716+71

Systematic errors through polarization measurements

- Instrumental polarization (Mueler matrix is non-diagonal)
- Depolarization in the Earth atmosphere depending on zenit distance and a parallactical angle
- Interstellar polarization

Comparing I and II methods

Measurement of magnetic field in AGN <u>Statement of the problem</u>:

□ The physical conditions in accretion disks around supermassive black holes essentially do not allow a direct method of magnetic field measurement

□ the value of magnetic field in accretion disk can be estimated on the basis of taking into account depolarization on Faraday rotation (Gnedin & Silantiev, 1997)

polarization measurement in optical continuum of QSO or Sy1, where effects of scattering at dust torus can be neglected

comparison of the received estimates of magnetic field strengths near the BH horizon with various models

Measurement of magnetic field in AGN Sample objects:

- nearby QSO or star-like Sy1 with z < 0.5</p>
- galactic latitude b>30°
- lack of radio emission and bright jets
- reliable estimates of mass of the central black holes
- measured luminosity of accretion disks and width of hydrogen lines

Measurement of magnetic field in AGN Observation at 6-m telescope

> observation of the AGN sample were carried out in the autumn 2008 and 2009 in the course of the observation program «Magnetic field in AGN» (PI T.M.Natsvlishvili) during 6 nights

> polarization is measured in continuum at 5100 A (for z=0) and power index n in the relation $P \sim \lambda^n$ for 15 QSO and star-like Sy1 of 14.5-16.3 magnitude in a range of redshifts 0.045-0.466

accuracy estimates of polarization are 0.15-0.3
 %, those for index n of about 0.2

Table 1. Results of our observations

Measurement of magnetic field in AGN

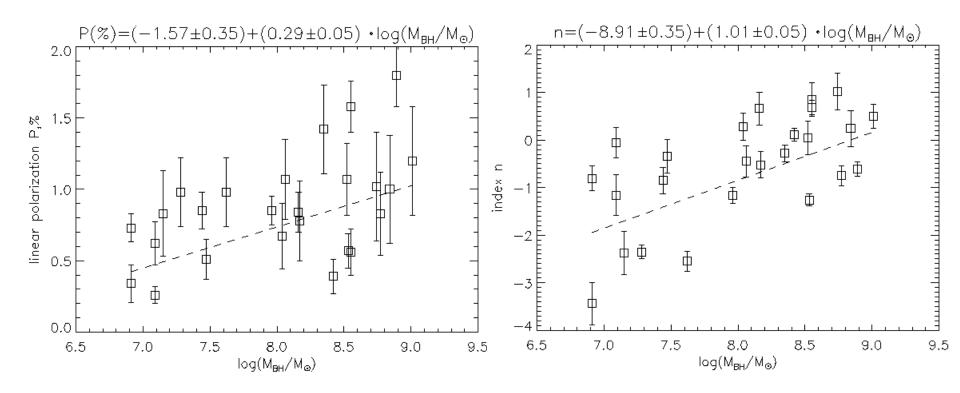

Object	m_V	z	Туре	Date	$T_{\rm exp}, s$	$P_V,\%$	PA_V , deg	n
PG 0007+106	15.2	0.089	Sy1	Nov. 30, 2008	3000	1.02 ± 0.38	83	0.15 ± 0.25
PG 0026+129	15.3	0.142	QSO	Nov. 30, 2008	3000	1.07 ± 0.28	99	-0.45 ± 0.33
PG 0049+171	16.1	0.064	Sy1.5	Sep. 24, 2009	2160	1.42 ± 0.31	247	-0.28 ± 0.18
PG 0157+001	15.7	0.163	Sy1.5	Dec. 1, 2008	3000	0.78 ± 0.28	17	-0.52 ± 0.28
PG 0804+761	14.7	0.100	QSO	Dec. 2, 2008	3000	1.00 ± 0.38	83	0.24 ± 0.38
PG 0844+349	14.5	0.064	Sy1	Nov. 29, 2008	3000	0.85 ± 0.10	243	-1.17 ± 0.17
PG 0953+414	15.3	0.234	QSO	Dec. 3, 2008	3000	0.39 ± 0.12	317	0.11 ± 0.13
PG 1022+519	15.8	0.045	Sy1	Nov. 30, 2008	3000	0.83 ± 0.30	259	-2.37 ± 0.45
PG 1116+215	14.4	0.177	QSO	Nov. 29, 2008	3000	0.57 ± 0.12	193	-1.26 ± 0.13
PG 2112+059	15.9	0.466	QSO	Nov. 29, 2008	3000	1.04 ± 0.21	258	0.45 ± 0.17
				Aug. 18, 2009	3600	1.08 ± 0.20	243	0.35 ± 0.10
PG 2130+099	14.7	0.063	Sy1	Nov. 30, 2008	3000	0.62 ± 0.15	53	-0.05 ± 0.32
PG 2209+184	15.9	0.070	Sy1	Sep. 24, 2008	3600	0.83 ± 0.29	200	-0.75 ± 0.21
PG 2214+139	15.1	0.066	Sy1	Nov. 28, 2008	3000	1.58 ± 0.18	323	-0.69 ± 0.15
PG 2233+134	16.3	0.326	QSO	Nov. 29, 2008	3000	0.67 ± 0.23	253	0.28 ± 0.28
3C 390.3	15.2	0.056	Sy1	Nov. 29, 2008	3000	2.09 ± 0.22	140	-0.57 ± 0.22
				Aug. 17, 2009	3600	1.58 ± 0.18	146	-0.64 ± 0.07
				Sep. 24, 2009	3600	1.80 ± 0.24	144	-0.58 ± 0.06

Table 2. Masses of the central black holes and polarization in continuum

Measurement of magnetic field in AGN

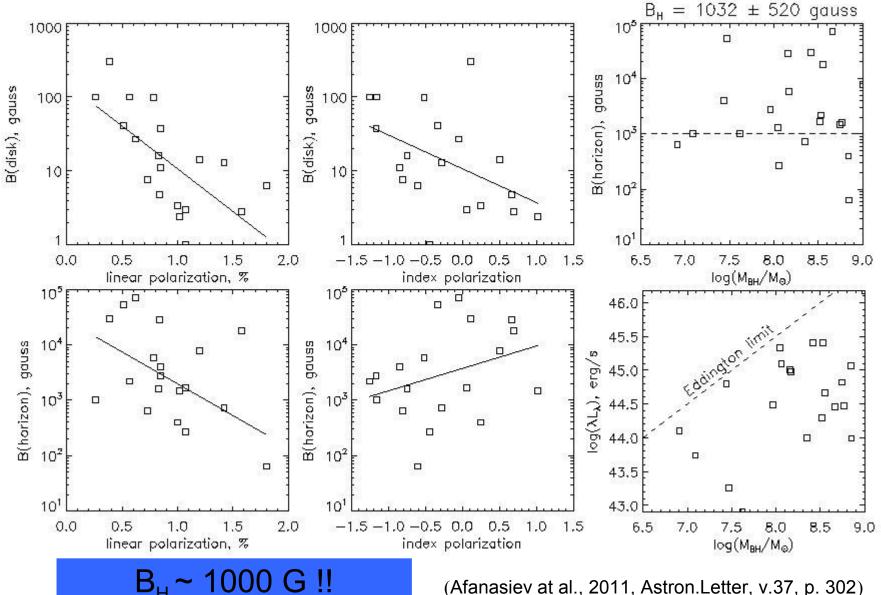
Object	Туре	$\log \lambda L_{\lambda},$ erg s ⁻¹ (opt.)	$\log rac{M_{ m BH}}{M_{\odot}}$	References	$P_V, \%$	n	References
PG 0007+106	Sy1	44.82	$8.73^{+0.08}_{-0.10}$	6	1.02 ± 0.38	0.15 ± 0.25	1
PG 0026+129	QSO	45.02	$8.59^{+0.07}_{-0.12}$	7	1.07 ± 0.28	-0.45 ± 0.33	1
PG 0049+171	Sy1.5	44.00	$8.35\substack{+0.08\\-0.10}$	6	1.42 ± 0.31	-0.28 ± 0.18	1
PG 0157+001	Sy1.5	44.98	$8.17^{+0.08}_{-0.10}$	6	0.78 ± 0.28	-0.52 ± 0.28	1
PG 0804+761	QSO	44.94	$8.84\substack{+0.05\\-0.06}$	7	1.00 ± 0.38	0.24 ± 0.38	1
PG 0844+349	Sy1	44.35	$7.97^{+0.15}_{-0.23}$	7	0.85 ± 0.10	-1.17 ± 0.17	1
PG 0953+414	QSO	45.40	$8.42^{+0.08}_{-0.10}$	6	0.39 ± 0.12	0.11 ± 0.13	1
PG 1022+519	Sy1	43.70	$7.15\substack{+0.09\\-0.11}$	6	0.83 ± 0.30	-2.37 ± 0.45	1
PG 1116+215	QSO	45.40	$8.53^{+0.08}_{-0.10}$	6	0.57 ± 0.12	-1.26 ± 0.13	1
PG 2112+059	QSO	46.18	$9.00^{+0.09}_{-0.11}$	6	1.06 ± 0.21	0.40 ± 0.15	1
PG 2130+099	Sy1	44.46	$8.66\substack{+0.05\\-0.06}$	7	0.62 ± 0.15	-0.05 ± 0.32	1
PG 2209+184	Sy1	44.47	$8.77^{+0.08}_{-0.10}$	6	0.83 ± 0.29	-0.75 ± 0.21	1
PG 2214+139	Sy1	44.66	$8.55\substack{+0.09\\-0.12}$	6	1.58 ± 0.18	-0.69 ± 0.15	1
PG 2233+134	QSO	45.33	$8.04\substack{+0.08\\-0.10}$	6	0.67 ± 0.23	0.28 ± 0.28	1
3C 390.3	Sy1	43.99	$8.85^{+0.09}_{-0.11}$	6	1.80 ± 0.22	-0.61 ± 0.15	1
I Zw 1	Sy1	44.80	$7.44_{-0.12}^{+0.09}$	6	0.85 ± 0.13	-0.85 ± 0.28	2
Mrk 509	Sy1	44.28	$8.16\substack{+0.04\\-0.04}$	7	0.84 ± 0.14	0.66 ± 0.35	2
Mrk 573	Sy1	44.40	$7.28^{+0.08}_{-0.10}$	8	0.98 ± 0.24	-2.35 ± 0.14	3
Mrk 841	Sy1.5	44.29	$8.52\substack{+0.08\\-0.10}$	6	1.07 ± 0.25	0.05 ± 0.35	2
NGC 3227	Sy1.5	42.38	$7.63^{+1.1}_{-1.9}$	7	0.98 ± 0.24	-2.55 ± 0.21	4, 9
NGC 3783	Sy1	43.26	$7.47\substack{+0.07 \\ -0.09}$	7	0.51 ± 0.14	-0.34 ± 0.35	2
NGC 4593	Sy1	43.09	$6.73\substack{+0.03\\-0.09}$	7	0.34 ± 0.13	-3.44 ± 0.45	2, 9
NGC 5548	Sy1	43.51	$7.83^{+0.02}_{-0.02}$	7	0.73 ± 0.10	-0.81 ± 0.26	5, 9
NGC 7469	Sy1	43.72	$7.09^{+0.05}_{-0.05}$	7	0.26 ± 0.06	-1.16 ± 0.43	2

Measurement of magnetic field in AGN Empirical relation

Significant correlation of the polarization properties with masses of SMBH specifies that observed dependences are produced by physical mechanisms in accretion disk

Computation of magnetic field

Anisotropy in the hot-gas density distribution in AD =>
 Thompson scattering => linear polarization;

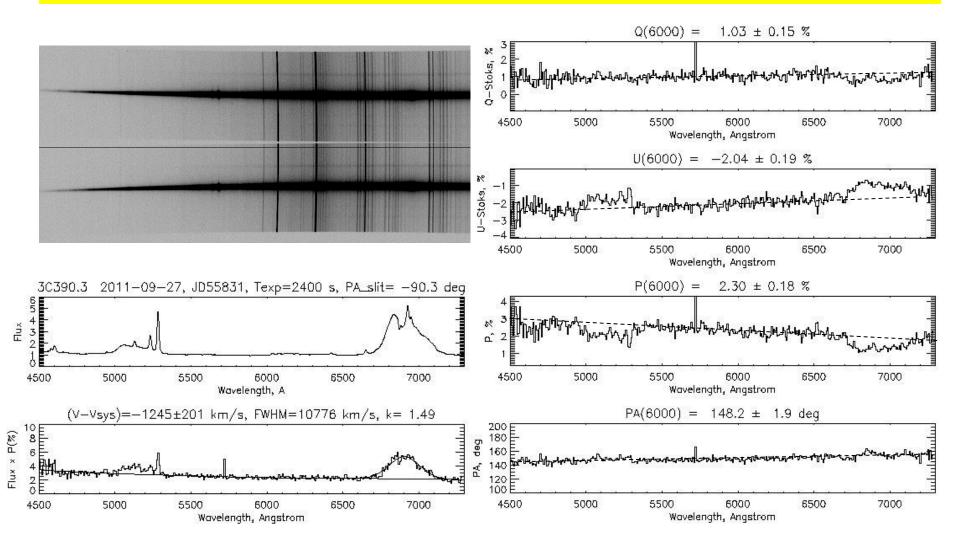

✓ If the magnetic field is not strong ($B < 10^6 G$) to provide optical anisotropy of the medium, then the real optical anisotropy can result from the Faraday rotation of the polarization plane on the photon mean free path in the medium (Gnedin and Silant'ev 1984), that results in strong dependence of the polarization on a wavelength;

✓ For accretion disk with the temperature distribution $T_e(R) \sim R^{-p}$ and of a magnetic field dependence on radius $B(R) \sim B_H(R_H/R)^s$

$$P_{l} \sim \frac{P_{l}(0,\mu)}{B_{z,\perp}\lambda^{2}} \sim \lambda^{(s/p-2)}$$
 (Silant'ev at al., 2007)

the quantity $P_{l}(0,\mu)$ is well known from the theory of polarized radiation transfer (Sobolev 1949) and can reach 11.7%. Strength of a magnetic field at the horizon B_{H} was calculated within the magnetic coupling model $B_{H}=c_{B}(2M)^{1/2}R_{g}$ (Ma et al., 2007)

Estimation of the magnetic field strength for the AGN sample

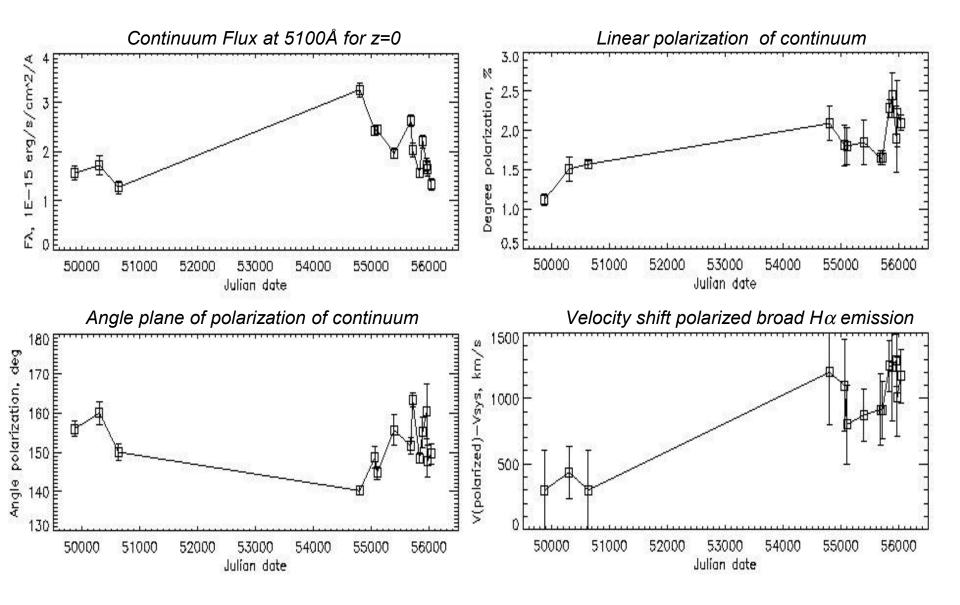

(Afanasiev at al., 2011, Astron.Letter, v.37, p. 302)

Variability of the polarization properties For some Sy1

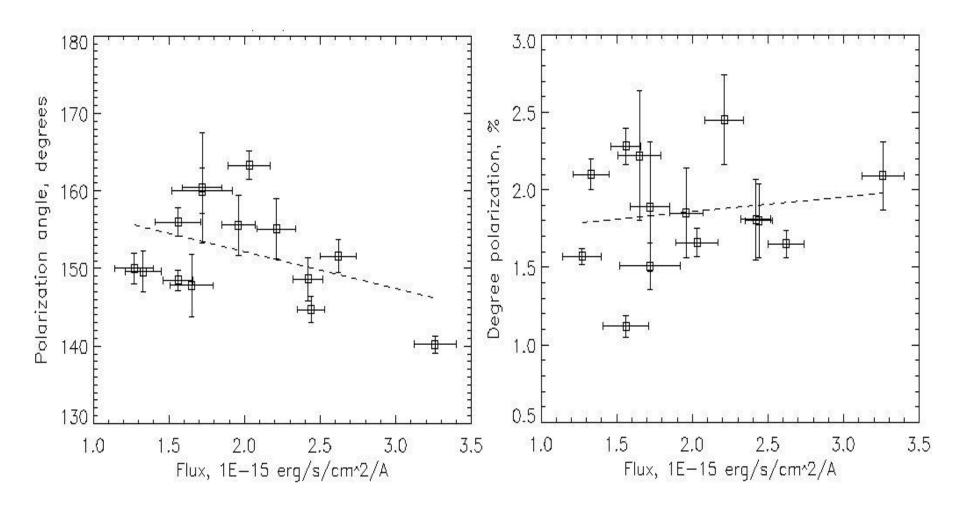
Observations of variability of the spectropolarimetric properties of AGN were carried out within three observation programs at the 6-m telescope during 2008-2012:

- «Magnetic field in AGN» (Natsvlishvili)
- > AGN spectropolarimetry' (Shapovalova)
- > 2D-spectrophotometry of SyG (Afanasiev) Below results of spectropolarimetry for two objects - 3C390.3 and Mkn6 - are presented

Variability in 3C390.3. Example spectra

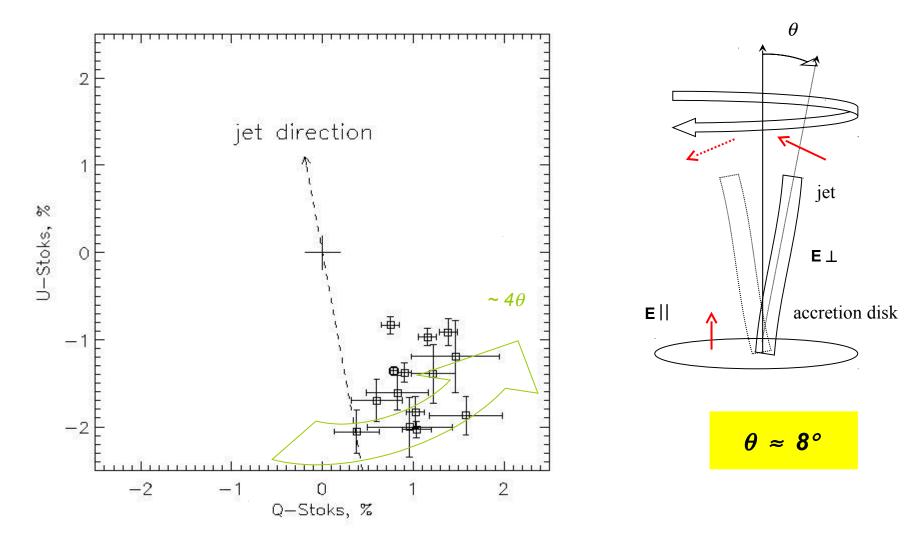

Variability in 3C390.3. Resulted table

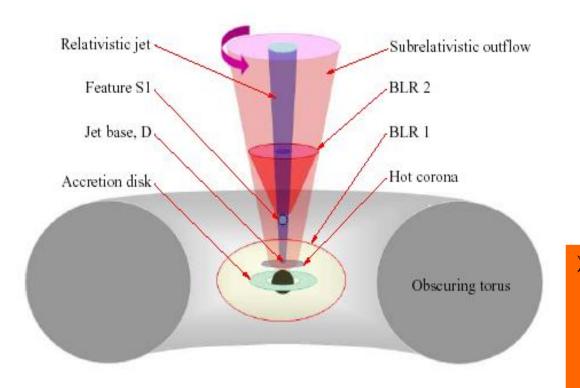
Julian date	Q(6000), %	U(6000), %	P(6000), %	PA(6000), degrees	Continuum(5100), 10 ⁻¹⁵ erg/s/cm ² /Å	V _{sys} -V _{polarized} , km/s
49875	0.59 ± 0.10	-0.94 ± 0.10	1.12 ± 0.07	156.0 ± 1.9	1.56 ± 0.15	(300 ± 300)
50302	0.74 ± 0.10	-1.17 ± 0.10	1.51 ± 0.15	160.0 ± 2.9	1.72 ± 0.20	437 ± 200
50628	0.54 ± 0.05	-1.47 ± 0.05	1.57 ± 0.05	150.0 ± 2.0	1.27 ± 0.13	(300 ± 300)
54799	0.38 ± 0.25	-2.06 ± 0.25	2.09 ± 0.22	140.2 ± 1.1	3.26 ± 0.14	1200 ± 400
55060	0.82 ± 0.20	-1.60 ± 0.34	1.81 ± 0.26	148.6 ± 2.8	2.42 ± 0.10	1100 ± 350
55099	0.60 ± 0.24	-1.70 ± 0.28	1.80 ± 0.24	144.7 ± 1.7	2.44 ± 0.09	800 ± 300
55394	1.21 ± 0.34	-1.38 ± 0.24	1.85 ± 0.29	155.6 ± 3.9	1.96 ± 0.11	874 ± 200
55682	0.90 ± 0.11	-1.38 ± 0.08	1.65 ± 0.09	151.6 ± 2.1	2.62 ± 0.12	915 ± 276
55713	1.39 ± 0.15	-0.90 ± 0.10	1.66 ± 0.09	163.3 ± 1.8	2.03 ± 0.14	913 ± 220
55831	1.04 ± 0.09	-2.03 ± 0.16	2.28 ± 0.12	148.5 ± 1.3	1.56 ± 0.10	1250 ± 193
55885	1.52 ± 0.22	-1.83 ± 0.40	2.45 ± 0.29	155.1 ± 3.9	2.21 ± 0.13	1246 ± 418
55959	1.26 ± 0.41	-1.09 ± 0.49	1.89 ± 0.42	160.4 ± 7.1	1.72 ± 0.13	1294 ± 201
55971	0.97 ± 0.34	-1.95 ± 0.47	2.22 ± 0.42	147.8 ± 4.0	1.65 ± 0.14	1012 ± 304
56032	1.03 ± 0.18	-1.80 ± 0.19	2.10 ± 0.10	149.6 ± 2.6	1.33 ± 0.12	1170 +201


(*) Corbett at al., 2000, MNRAS, v.319, 685

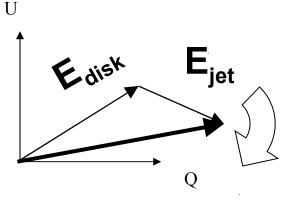
(**) Kay at al., 1999, ASP Conference Series, v.175, 205

Variability in 3C390.3

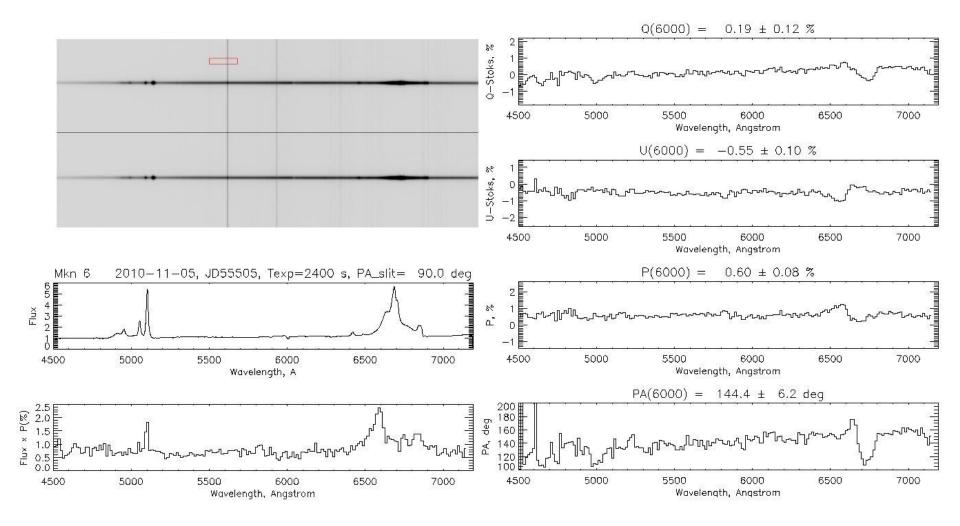

Variability in 3C390.3. Relation


Variability in 3C390.3. Turn of the polarization plane

Direct view of the accretion disk and jet in continuum


observed polarization is superposition of two non-colinear vectors

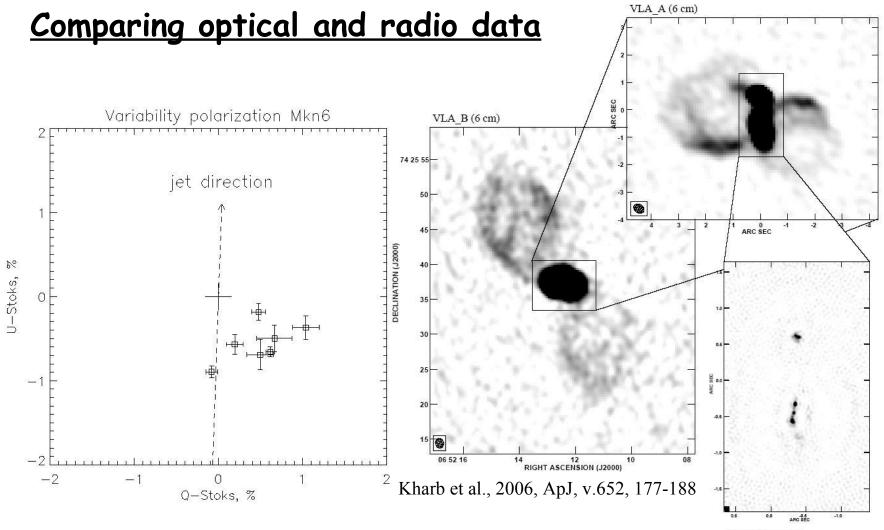
Variability in 3C390.3. Composition of two polarizations



A sketch of the nuclear region in 3C 390.3. The conical shape of the BLR2 associated with the outflow arises from a large fraction of the continuum radiation being beamed into a cone with a halfopening angle ~ 30 deg. (Shapovalova et al., 2010)

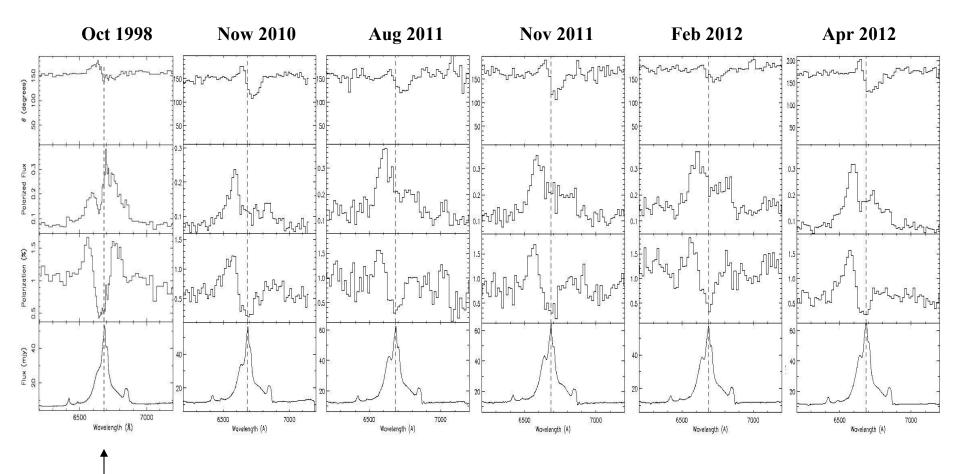
- In continuum composition of TWO VARIABLE polarization vectors from disk (||) and jet (⊥)
- In Hα polar scattering (depolarization) in plane
 ⊥ jet direction at hot subrelativistic outflow with velocity ~10³ km/s

Polarization Mkn6. Example spectra

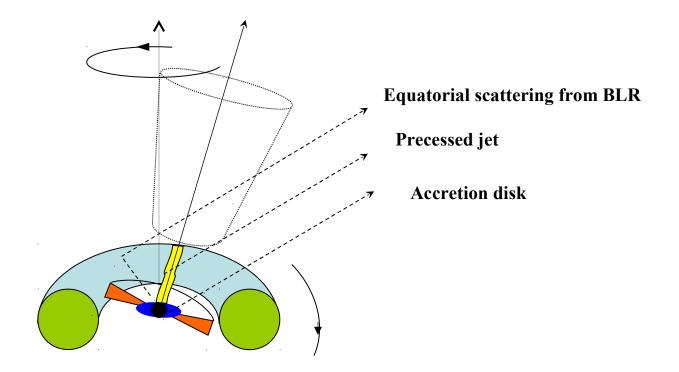

Polarization variability of Mkn 6 in continuum

Data of spectropolarimetry Mkn 6

Date observation	Julian date	Exposure, sec	Q(6000), %	U(6000), %	P(6000), %	PA(6000), degrees
1997.02.08(*)	50488	4000	-0.08 ± 0.07	-0.90 ± 0.07	0.90 ± 0.13	132.4 ± 1.1
1998.10.02(*)	51089	2400	0.61 ± 0.06	-0.66 ± 0.06	0.90 ± 0.12	156.5 ± 0.8
2010.11.05	55505	2400	0.19 ± 0.12	-0.55 ± 0.10	0.60 ± 0.18	144.4 ± 6.2
2011.08.27	55800	3360	0.50 ± 0.18	-0.65 ± 0.16	0.85 ± 0.21	152.8 ± 4.5
2011.11.21	55886	2400	0.63 ± 0.16	-0.48 ± 0.21	0.83 ± 0.15	161.6 ± 6.1
2012.02.14	55971	3600	1.03 ± 0.14	-0.32 ± 0.16	1.10 ± 0.16	170.2 ± 4.2
2012.04.21	56038	2880	0.46 ± 0.10	-0.20 ± 0.08	0.051 ± 0.09	169.4 ± 36


(*) Smith et al., 2002, MNRAS, v.335, 773

Polarization variability of Mkn 6 in continuum


MERLIN (6 cm)

Polarization variability in BLR of Mkn 6

Smith et al., 2002

The fantasy on the polarization in Mrk 6

Different angular velocity of rotation and spin direction at three regions: accretion disk, BLR-disk and dusty torus

СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ