Институт физики КФУ: Малыгин Е.А.

ЛСФВО САО РАН: Уклеин Р.И., Шабловинская Е.С. Перепелицын А.Е., Гроховская А.А.

Фотометрическое эхокартирование BLR-областей в галактиках с активными ядрами на 0.1 < z < 0.8

• Вириальное отношение позволяет оценить массу СМЧД

$$M(SMBH) = f c \tau v^2/G$$

где **G** – гравитационная постоянная

с – скорость света

т – время запаздывания данной спектральной линии

U – характерная скорость газа, излучающего данную линию (ширина линии)

f – безразмерный множитель порядка единицы, зависящий от структуры и кинематики BLR-области.

FIG. 2.—The mass of the black hole (M_{\odot}) vs. the luminosity at $\lambda 1335$ of the object. 3C 273 is marked with an open circle. Error bars going down to $10^7 M_{\odot}$ actually extend to zero mass. The two regression lines are shown.

FIG. 1.—The radius of the BLR vs. the luminosity at $\lambda 1335$. 3C 273 is marked with an open circle. Error bars going down to log (R) = 1 actually extend to zero radius. The dashed line indicates $R \propto L_{Bol}^{1/2}$; the solid line is the regression of L_{1335} on R.

Одна из первых работ, где найдены зависимости (**Koratkar & Gaskell 1991**): радиус_{BLR}-светимость (*r*–*L*) и масса_{SMBH}-светимость.

FIG. 3.—The mass of the black hole (M_{\odot}) vs. the bolometric luminosity of the object. The solid line represents the Eddington mass-luminosity relationship. Error bars going down to $10^7 M_{\odot}$ actually extend to zero mass.

FIG. 6.—BLR size-luminosity relation. The solid line is the best fit to the data. The dashed line is a fit with a slope of 0.5.

Netzer et al. 1997 (data – Wanders et al. 1997): BLR stratification

Для данных объектов разные линии разных ионов дают разные времена задержек.

Greene et al. 2010

L	α	β	ϵ_0	Fit
(1)	(2)	(3)	(4)	(5)
$L_{2-10 \text{keV}}/10^{43}$	0.09 ± 0.05	0.52 ± 0.05	0.26	С
$L_{2-10 \text{keV}}/10^{43}$	0.09 ± 0.06	0.52 ± 0.05	0.25 ± 0.05	ML
$L_{{ m H}\beta}/10^{43}$	0.85 ± 0.05	0.53 ± 0.04	0.22	C
$L_{{ m H}eta}/10^{43}$	0.85 ± 0.06	0.53 ± 0.04	0.22 ± 0.04	ML
$L_{{ m H}\beta_{ m b}}/10^{43}$	0.86 ± 0.06	0.53 ± 0.04	0.22	С
$L_{{\rm H}\beta_{\rm b}}/10^{43}$	0.86 ± 0.06	0.53 ± 0.04	0.22 ± 0.04	ML
$L_{\rm [OIII]}/10^{42}$	0.53 ± 0.06	0.62 ± 0.07	0.29	C
$L_{\rm [OIII]}/10^{42}$	0.52 ± 0.06	0.61 ± 0.07	0.30 ± 0.05	ML
$L_{[O IV]}/10^{42}$	0.76 ± 0.10	0.58 ± 0.11	0.35	C
$L_{\rm [OIV]}/10^{42}$	0.75 ± 0.10	0.58 ± 0.11	0.35 ± 0.07	ML

Notes. Fits to log $(R_{BLR}/10 \text{ pc}) = \alpha + \beta \log L$, for each luminosity. Column 1: luminosity measure (erg s⁻¹). $L_{H\beta_b}/10^{43}$ has the narrow H β emission removed. Column 2: α . Column 3: β . Column 4: intrinsic scatter. Maximum-likelihood fits are those with error bars on the intrinsic scatter. Column 5: fit type, either $C = \chi^2$ fit or ML = maximum-likelihood.

Fig. 1 The BLR size, R_{BLR} , versus the luminosity of MgII emission line $(\lambda 2798 \text{ Å})$, L_{MgII} , of 27 AGNs in the reverberation mapping sample for which the MgII emission line have been measured in Sect.2. The correlation coefficient between the two parameters is 0.72. The solid line shows an OLS bisector fit to data (Eq. 1), and has a slope of 0.57.

Fig. 2 The same as Fig.1, but for the CIV emission line $(\lambda 1549 \text{ Å})$ of 33 AGNs. The correlation coefficient is 0.76. The solid line (Eq. 2) has a slope of 0.60.

Figure 5. Locations of the measured rest-frame lags for our example cases in the R - L plane. For RM 651, the luminosity positions have been slightly shifted for different lines for clarity. The dashed line is the best-fit result in Paper I for C IV lags. The measured lags are all consistent with this relation. There is a hint that the C IV (Mg II) lag is the shortest (longest) among the three lines, but the uncertainties are too large to confirm this trend.

RM363 CIV -> z = 2.64 -> τ = 1113 дней RM372 CIV -> z = 1.75 -> τ = 207 дней RM651 CIV -> z = 1.49 -> τ = 125 дней CIII] -> τ = 180 дней MgII -> τ = 258 дней

Shen et al. 2019 (SDSS-RM)

Figure 11. Radius-Luminosity relation for Mg II line (points and errors given in Table 3). Dashed line is a line with the slope 0.5 passing through the measurement for CTS C30.10. Long dashed magenta line comes from the Bentz et al. (2013) for H β line (model Clean2) under the assumption that $L_{3000} = 1.84 L_{5100}$.

Наиболее популярная зависимость по линии H_{β} на λ = 5100 Å (**Bentz et al., 2009**).

Конечная цель данного исследования – статистически укрепить зависимость R(L), добавив измерения ещё неисследованных BLR-областей ядер активных галактик из исследуемой выборки.

N⁰	Объект	RA Dec J2000	mag(V)	Z	line	τ	Фильтры (line+cont)
1	2MASX J08535955+7700543	08 ^h 53 ^m 59 ^s .4 +77° 00' 54".56	17 ^m .0	0.106	H_{α}	27	SED725 SED700
2	VII Zw 244	08 ^h 44 ^m 45 ^s .3 +76° 53' 09".5	15 ^m .7	0.131	Η _β	34	SED550 SED525
3	SDSS J093702.85+682408.3	09 ^h 37 ^m 02 ^s .87 +68° 24' 08".3	18 ^m .0	0.294	H _β	47	SED625 SED600
4	SDSS J094053.77+681550.3	09 ^h 40 ^m 53 ^s .78 +68° 15' 50".46	19 ^m .4	0.371	H_{α}	59	SED900 SED875
5	SDSS J100057.50+684231.0	10 ^h 00 ^m 57 ^s .5 +68° 42' 31″	19 ^m .1	0.499	H _β	80	SED725 SED700
6	2MASS J01373678+8524106	01 ^h 37 ^m 36 ^s .7 +85° 24' 10".6	16 ^m .6	0.499	H _β	79	SED725 SED700
7	SDSS J095814.46+684704.8	09 ^h 58 ^m 14 ^s .4 +68° 47' 04".78	19 ^m .7	0.662	H_{β}	92	SED800 SED775
8	GALEX 2486024515200490156	10 ^h 01 ^m 51 ^s .6 +69° 35' 26".7	19 ^m .6	0.847	H_{β}	124	SED900 SED875

Zeiss-600

Zeiss-1000

Специальная Астрофизическая Обсерватория РАН

Диаметр главного зеркала	1016 мм
Система Ричи-Кре	гьена:
Экв. фокусное расстояние	13.3 М
D невиньетир. поля	170 мм=45'
Спектральный диапазон	0.3-10 мкм
Размер кружка рассеяния	0".8
Масса трубы	4.8 т
Масса монтировки	12 т
Максимальная масса аппаратуры в фокусе Кассегрена	96 кг
Предельная звёздная величина, полученная в фотометрическую ночь с изображениями 1".5	23 ^m .5

Интерференционные светофильтры

Spectral Energy Distribution

Ширина полос пропускания ~ 250 Å

Полосы пропускания подобранных фильтров SED на спектрах исследуемых AGN. Поток f_{λ} указан в единицах 10⁻¹⁶ эрг/см²/с/Å в зависимости от длины волны в Å.

Abolfathi, Aguado, Aguilar et al. (2018)

Boroson and Green (1992)

Wei, Xu, Dong, and Hu (1999)

N⁰	Объект	RA Dec J2000	mag(V)	Z	line	τ	Фильтры (line+cont)
1	2MASX J08535955+7700543	08 ^h 53 ^m 59 ^s .4 +77° 00' 54".56	17 ^m .0	0.106	H_{α}	27	SED725 SED700
2	VII Zw 244	08 ^h 44 ^m 45 ^s .3 +76° 53' 09".5	15 ^m .7	0.131	Η _β	34	SED550 SED525
3	SDSS J093702.85+682408.3	09 ^h 37 ^m 02 ^s .87 +68° 24' 08".3	18 ^m .0	0.294	H _β	47	SED625 SED600
4	SDSS J094053.77+681550.3	09 ^h 40 ^m 53 ^s .78 +68° 15' 50".46	19 ^m .4	0.371	H_{α}	59	SED900 SED875
5	SDSS J100057.50+684231.0	10 ^h 00 ^m 57 ^s .5 +68° 42' 31″	19 ^m .1	0.499	H _β	80	SED725 SED700
6	2MASS J01373678+8524106	01 ^h 37 ^m 36 ^s .7 +85° 24' 10".6	16 ^m .6	0.499	H_{β}	79	SED725 SED700
7	SDSS J095814.46+684704.8	09 ^h 58 ^m 14 ^s .4 +68° 47' 04".78	19 ^m .7	0.662	H_{β}	92	SED800 SED775
8	GALEX 2486024515200490156	10 ^h 01 ^m 51 ^s .6 +69° 35' 26".7	19 ^m .6	0.847	H_{β}	124	SED900 SED875

Квантовая эффективность приёмников

92 %

95 %

89 %

75 %

50 %

MMPP – Multi-Mode Photometer-Polarimeter

Eagle V

CCD

Стандарт	SED525	SED550	SED600	SED625	SED700	SED725	SED775	SED800	SED875	SED900
G193-74	15.63	15.61	15.58	15.58	15.58	15.59	15.61	15.62	15.68	15.73
$\mathrm{BD}{+}75^{\circ}325$	9.47	9.56	9.73	9.81	10.03	10.10	10.22	10.28	10.46	10.51
Feige34	11.09	11.17	11.35	11.43	11.63	11.69	11.79	11.84	11.90	12.05
$BD+33^{\circ}2642$	10.71	10.78	10.91	10.97	11.13	11.18	11.28	11.33	11.43	11.45
$BD+28^{\circ}4211$	10.43	10.52	10.70	10.78	10.99	11.05	11.18	11.24	11.42	11.50
$\mathrm{BD}{+}25^{\circ}4655$	9.60	9.69	9.87	9.95	10.16	10.22	10.35	10.41	10.59	10.68
Feige110	11.76	11.85	12.03	12.10	12.32	12.39	12.50	12.57	12.74	12.79

Oke, 1990

Потоки спектрофотометрических звёзд-стандартов в единицах АВ-величин в полосах пропускания фильтров SED

$$m_{AB} = -2.5 \cdot \lg \left[\frac{\int f_{\nu} \cdot filter(\nu) \cdot d\nu}{\int filter(\nu) \cdot d\nu} \right] - 48.60$$

где поток стандарта f_{ν} указан в единицах эрг/с/см²/Гц.

Первичная редукция кадров (image processing)

Interactive Data Language (IDL)

Пример редукции полученного кадра поля с галактикой #1

Необработанный кадр

Редуцированный кадр

#6 поле -> 2MASS J01373678+8524106 в SED725

Заключение

- создана независимая методика наблюдений методом фотометрического эхокартирования для телескопов метрового класса
- создана сеть вторичных стандартов в полях возле исследуемых объектов
- получены кривые блеска для наиболее ярких АЯГ исследуемой выборки
- Наблюдается короткопериодическая переменность на уровне 0^m.1
- получены оценки наблюдаемых задержек для AGN #1 и #6

