Лунные покрытия на 6-м телескопе САО РАН

В. Д**ьяченко**¹, А. Рикики²,

Ю. Балега¹,

A. Бескакотов¹,A. Максимов¹,

 $A. {Mитрофанова}^{1},$

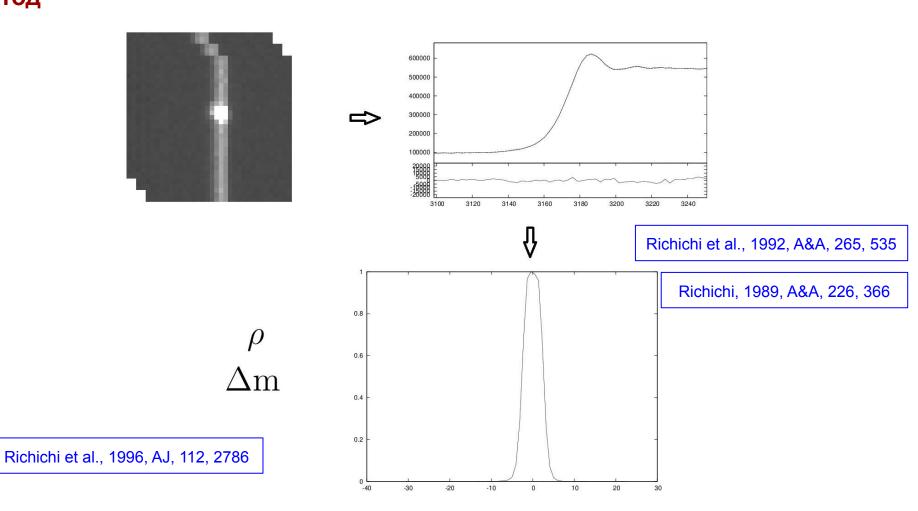
Д. Растегаев¹, Е. Шмайлова^{1,3}

1 - CAO PAH
 2 - INAF, Италия

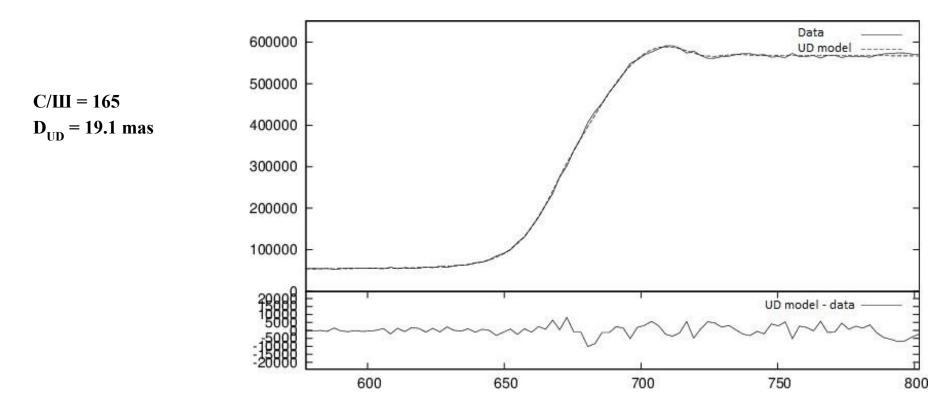
3 - СПбГУ

Georges Méliès

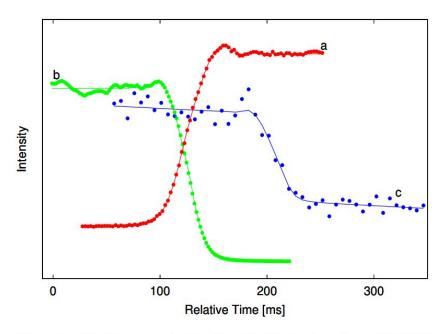
La lune à un mètre


1898

Maksimov et al., 2009, Astrophys. Bull., 64, 296


Метод

Наблюдения 2015-2018 годов


Event	Date	UT	Source	T	V	Sp	Bin	Sub	Mag	DIT	Kin	Filter	SNR	Note
1	2015 Oct 29	23:32	α Tau	R	0.9	K5+III	16	32	2.5	0.1	2.58	R	165.5	Res
2	2015 Oct 31	22:51	20 Gem	R	6.2	F7III	16	32	2.5	1.0	3.48	R	8.3	UR
	2015 Oct 31	22:51	20 Gem B	R	7.0	F5IV	16	32	2.5	1.0	3.48	R	2.7	UR
3	2016 Feb 19	23:45	1 Cnc	D	5.8	K3-III	16	32	2.5	0.1	2.58	694/10	21.9	UR
4	2016 Jun 25	23:42	λ Aqr	R	3.8	M2.5III	16	32	2.5	0.1	2.58	694/10	218.3	Bin
5	2016 Nov 19	21:52	SAO 98148	R	7.6	F0	8	64	2.5	0.3	3.80	800/100	31.1	UR
6	2016 Nov 19	21:53	SAO 98149	R	8.5	F0	8	64	2.5	0.3	3.80	800/100	14.2	UR
7	2016 Nov 20	03:16	SAO 98270	R	8.0	K0	16	32	2.5	0.1	2.58	694/10	9.0	Bin
8	2016 Nov 20	23:29	18 Leo	R	5.6	K4III	16	32	2.5	0.1	2.58	694/10	67.7	UR
9	2016 Nov 21	00:14	R Leo	R	7.5	M7-9e	16	32	2.5	0.5	2.98	694/10	39.9	Res
10	2017 Feb 09	00:04	74 Gem	D	5.1	K5.5III	16	32	10	0.1	2.58	694/10	83.3	Res
11	2017 Oct 07	20:11	μ Cet	R	4.2	A9IIIp	16	32	2.5	0.1	2.58	694/10	45.3	Bin
12	2017 Nov 06	03:44	α Tau	D	0.9	K5+III	16	32	10	0.1	2.58	R	22.2	Res
	2017 Nov 06	03:55	α Tau	R	0.9	K5+III	16	32	2.5	0.1	2.58	R	4.3	Res
13	2017 Nov 30	21:52	HD 12102	D	8.4	F3IV	16	32	10	0.1	2.58	800/100	10.8	UR
14	2017 Nov 30	22:49	DE Psc	D	7.4	K5	16	32	10	0.1	2.58	800/100	89.5	Res
15	2017 Dec 01	15:50	μ Cet	D	4.2	A9IIIp	16	16	2.5	0.1	1.97	850/10	35.4	Bin
16	2018 Jan 26	16:17	SAO 93648	D	7.9	G5	16	32	2.5	0.1	2.58	800/100	9.3	UR
17	2018 Jan 26	17:21	DO 10160	D	10.1	K2	16	32	10	0.5	2.98	700/50	18.0	UR
18	2018 Jan 26	19:01	DO 10183	D	10.0	K7	16	32	10	0.5	2.98	700/50	33.6	UR
19	2018 Jan 26	19:52	SAO 93697	D	8.4	G0	16	32	10	0.2	2.68	700/50	35.0	UR
20	2018 Jan 26	21:40	SAO 93735	D	8.7	GOV:	16	32	10	1.0	3.48	800/100	34.5	UR
21	2018 Jan 28	15:27	IRC +20125	D	8.4	K7	16	32	10	0.1	2.58	700/50	38.2	UR
22	2018 Apr 26	20:14	SAO 119107	D	8.4	KOIII	16	32	2.5	0.1	2.58	800/100	6.0	UR
23	2018 Apr 26	2:34	IRC +00213	D	6.7	M0/1III	16	32	10	0.2	2.68	694/10	82.5	Res
24	2018 Apr 27	17:46	SAO 138923	D	8.0	F6V	16	32	10	0.1	2.58	700/50	8.1	UR
25	2018 Apr 27	20:53	SAO 138961	D	8.3	G8III/IV	16	32	16	0.4	2.88	800/100	17.4	UR

Наблюдения Альдебарана 29 Октября 2015

Andor iXon Ultra DU-897-CS0, binning 16x16, readout rate 17 MHz, electron multiplying gain = 100, shift speed = 0.5 μ s, 0.1 ms exposure time, kinetic regime. Sampling = 2.58 ms.

Кривые блеска 6-м телескопа в сравнении с 2.4 и 1.3-м телескопами

Figure 1. Light curves (points) marked as a, b, c, from the SAO 6-m, the Devasthal 1.3-m and the TNT 2.4-m telescopes, respectively. The data have been shifted in time, scaled and shifted in intensity, to fit in a single figure. The solid lines are the best fit by a uniform-disc (UD) model in each case, as discussed in the text.

Измеренные угловые размеры Альдебарана

SAO 6-m	1.3-m	TNT 2.4-m
752	644	371
19.12 ± 0.02	18.40 ± 0.04	17.78 ± 0.38
165.5	65.3	11.4
1.21	1.76	0.94
1.07	1.09	1.15
20.42 ± 0.02	20.06 ± 0.04	20.48 ± 0.44
	752 19.12 ± 0.02 165.5 1.21 1.07	752 644 19.12 ± 0.02 18.40 ± 0.04 165.5 65.3 1.21 1.76 1.07 1.09

Восстановленные профили Альдебарана

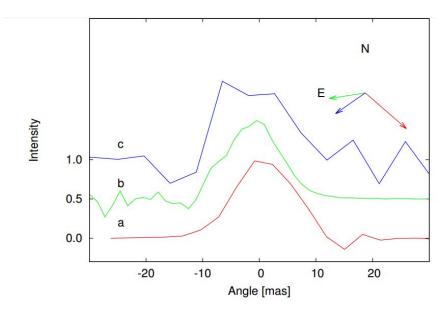


Figure 4. Reconstructed brightness profiles, using differentiation as explained in the text. The curves a, b, c, are for the data sets from SAO 6-m, Devasthal 1.3-m and TNT 2.4-m, respectively, with the effective wavelengths listed in Table 1. The profiles are shifted by arbitrary amounts in intensity, for the sake of clarity. The arrows display the direction of the scan by the lunar limb, projected on the sky and in counter-clockwise direction from the North they are for b, c, a respectively. The length of the arrows is inversely proportional to the speed of the scan.

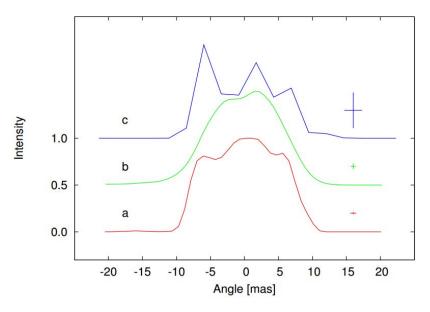
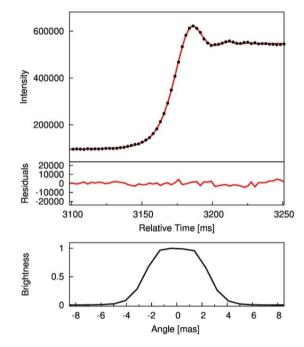
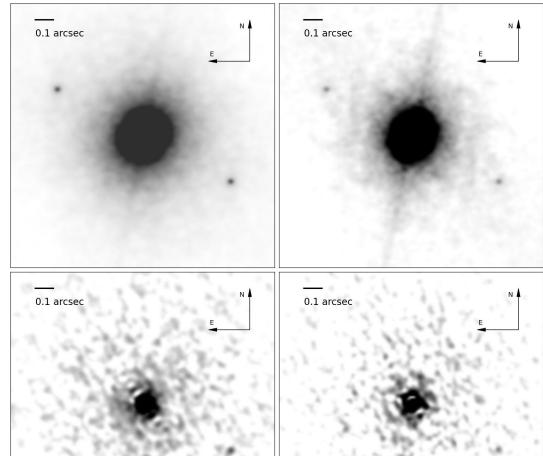


Figure 5. Reconstructed brightness profiles, using the maximum-likelihood CAL method as explained in the text. The curves are shifted in intensity, labeled and with the same sky orientation as in Fig. 4. The crosses on the right reflect the uncertainties for each profile, as explained in the text.

Измерение диаметра и обнаружение компонента lam Aqr

В ходе наблюдений на 6-м телескопе САО РАН нами был измерен диаметр близкого (plx = 8.47 мсд) М-гиганта lambda Aquarii в области псевдоконтинуума. Угловой диаметр составил 7.11 ± 0.02 мсд, линейный — 90 радиусов Солнца.




Figure 1: Top panel: the occultation data of λ Aqr (dots) and the best fit by a UD model with 7.11 mas. The residuals are also shown, magnified by a factor of ≈ 4 for clarity. Bottom panel: the brightness profile of λ Aqr reconstructed from the occultation data using the model-independent algorithm CAL [14]. It can be noted that the profile is approximately symmetric, as expected for our observation in a narrow continuum filter and without contamination by molecular absorption features.

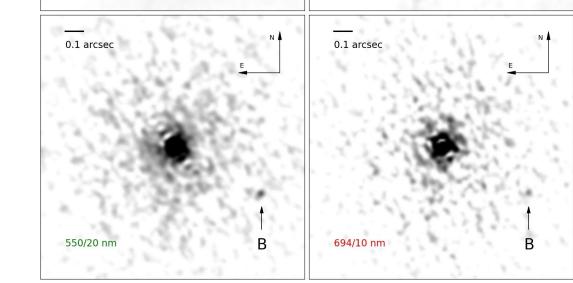
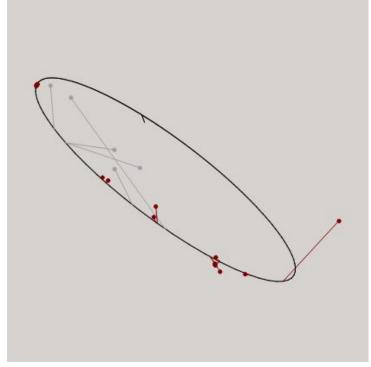
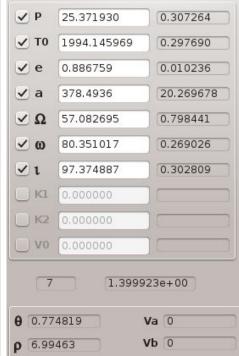

$\lambda \over \mu m$		$\sigma\phi_{UD} \ mas$	$\phi_{UD} - \phi_{UD_{694}}$	$(\phi_{UD} - \phi_{UD_{694}})/\sigma\phi_{UD}$		$\sigma\phi_{LD} \ mas$	method & reference
0.55	7.40	0.40	0.29	0.73	8.20	0.40	LO [11]
K	8.90	1.00	1.79	1.79	9.10	1.00	LBI [2]
K	8.90	0.70	1.79	2.56			LBI [3]
0.8	7.58	0.10	0.47	4.7	8.19	0.11	LBI [10]
0.55	7.34	0.11	0.23	2.09	8.19	0.11	LBI [10]
0.694	7.11	0.02	-	-			LO this work

Table 1: λ Agr diameter measurements

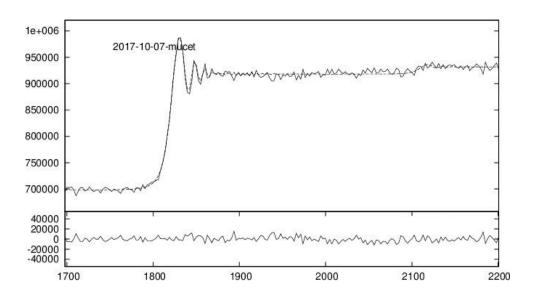

Ранее диаметр lam Aqr был измерен другими авторами методами покрытия Луной и длиннобазовой интерферометрии. Полученный в наших наблюдениях диаметр ниже остальных значений. Вероятно это можно связать с использованной в наших наблюдениях полосой пропускания. Область 694 нм представляет собой псевдоконтинуум, в то время как широкие V и I области содержат линии TiO. Это говорит о том, что полученное нами значение находится близко к радиусу фотосферы звезды, в то время как остальные наблюдения показывают более высокие слои звездной атмосферы.


У lam Agr впервые был обнаружен слабый компонент. Нами были проведены спеклинтерферометрические наблюдения этой Наблюдения проводились системы. фильтрах 550/20 и 694/10 нм. Измеренное угловое расстояние составило 526 ± 1 мсд. Разность блеска в V полосе составила 4.51 ± 0.03 звездной величины, что позволяет обнаруженный отнести компонент F5 Главной спектральному типу последовательности.

Предварительная орбита mu Cet

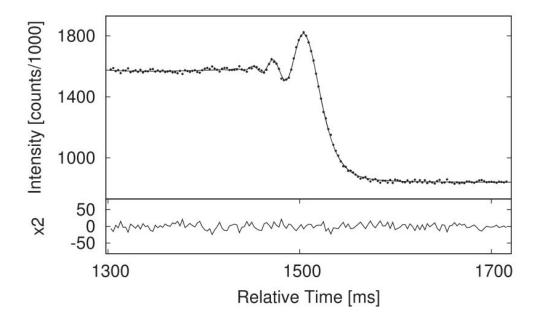
	Date	Author	Δθ	Δρ
1	1982.850000	I1Tok1985	-119.687650	-36.542275
2	1984.780000	I1Tok1985	-24.023498	-31.979239
3	1988.860000	IlIsmailov	69.658757	-40.644382
4	1988.870000	IlIsmailov…	28.096084	-46.756192
5	1989.710000	IlIsmailov	- 25.502493	11.900396
5	2000.040000	IlRichichi	21.903954	7.801949
7	2002.780000	IlRoberts2	-1.416263	-5.816858
8	2004.970000	IlHorch2008	-1.962488	1.634397
9	2004.970000	IlHorch2008	-0.462488	-6.365603
10	2004.970000	IlHorch2008	-1.962488	0.634397
11	2005.600000	IlHorch2008	0.659608	10.353261
12	2005.600000	IlHorch2008	0.959608	21.353261
13	2008.700000	IlHorch2009	0.426866	-19.493042
14	2008.770000	I1Tok2010	-0.955794	-6.442253
15	2011.690000	I 1Dya	0.551314	-3.529906
16	2011.950000	I 1Dya	-0.007706	-1.810289
17	2017.770000	I 1Dya	0.044589	-0.019102
18	2017.770000	I 1Dya	-0.155411	-0.319102
19	2017.920000	I 1Dya	0.195189	-0.007348
20	2017.920000	I 1Dya	0.495189	0.292652
21	2017.920000	I 1Dya	-0.004811	-0.107348
22	2017.920000	I 1Dya	0.095189	-0.607348

 $\Sigma M \approx 1.6 M_{\odot}$


Dyachenko et al., 2019, ASPC, 518, 156

Кратность и радиус mu Cet

forthcoming dedicated paper. Here, we would like to comment on the two additional companions detected in the near-IR by LO by Richichi et al. (2000), much closer into the primary at least in terms of projected separations (7 and 21 mas). In spite of our efforts to observe at wavelengths as red as 850 nm, we were not able to detect these additional components neither by LO nor by SI. Comparing the magnitude differences to the primary reported by Richichi et al. (2000) of $\Delta K = 2.1$ and 2.6 mag, respectively, against our LO limits of $\Delta m_{694} = 4.1$ mag and $\Delta m_{850} = 3.9$ mag, we conclude that these two components are necessarily much redder than the primary.


Such R - K colours would be consistent with main-sequence stars of spectral type M5 or cooler.

Dyachenko et al., 2018, MNRAS, 478, 5683

 μ Cet (AIII star) appears unresolved with upper limit 0.85 mas (SNR = 45) in 694/10 nm filter. R of μ Cet appears to be less 5 R $_{\odot}$.

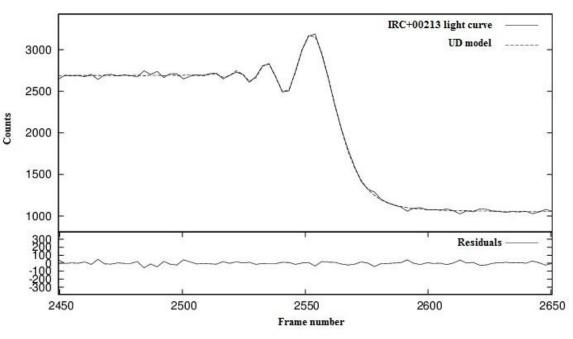
Диаметр 74 Gem

Figure 2. Top panel: light curve (dots) for 74 Gem, and best fit by a model with a UD of 3.12 mas. Bottom panel: the fit residuals, rescaled for clarity.

Our LO light curve for this star is shown in Fig. 2. The data are best fitted by a resolved UD model with 3.12 ± 0.06 mas diameter. The normalized χ^2 of this fit is 1.39, while for comparison a point-like model leads to $\chi_n^2 = 2.69$. Correction of scintillation, which is found to be at the 0.9 per cent level, is included in our fit by using Legendre polynomials.

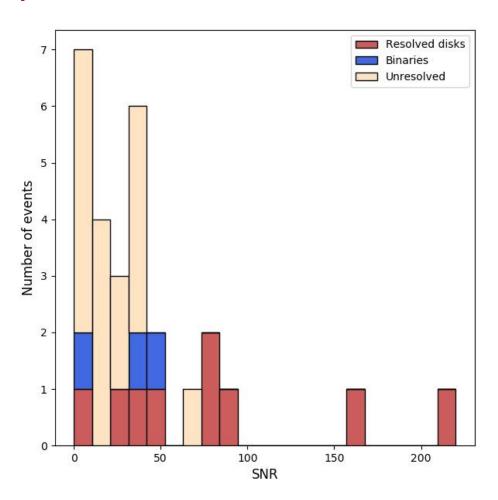
A number of previous diameter determinations by LO were obtained in the 1970s, although none with the accuracy of our present result (Beavers, Eitter & Cadmus 1981; White & Feierman 1987). The values are spread over a large range from 2.7 to 3.8 mas with correspondingly large errors, but they average to \approx 3.0 mas. We also mention that Eitter & Beavers (1979) found 74 Gem to be unresolved. Several estimates by indirect methods are also available, among them by Cohen et al. (1999) (3.18 \pm 0.04 mas) and by Alonso et al. (2000) (3.24 \pm 0.13 mas). We note that our direct determination is within 1 σ of these estimates.

An early occultation led Povenmire to claim a close companion to 74 Gem (Dunham 1975). None of the above mentioned LO publications could confirm the binarity, and similarly negative were observations by SI (Hartkopf & McAlister 1984). From inspecting our data over a wider time range than we used for the diameter determination, we can put upper limits of $\Delta m \le 4.7$ mag within ± 0.1 arcsec from the central star, and $\Delta m \le 4.2$ mag within ± 0.5 arcsec. These numbers refer to projected separations along PA = 38° and without correcting for scintillation. We did not obtain SI data for 74 Gem.


Dyachenko et al., 2018, MNRAS, 478, 5683

Диаметр IRC+00213

Наблюдения проводились в ночь 25-26 апреля 2018 в области псевдоконтинуума на длине волны 694 нм. Этот видимой части спектра наименее регион молекулярными полосами оксида титана, характерными для таких звезд, что говорит о близости полученной к фотосферному. Измеренное диаметра величины значение углового диаметра по модели однородно яркого диска составило 2,23 ± 0,06 миллисекунд дуги. Это хорошо согласуется с эмпирической оценкой, основанной на звездной величине и цвете 2,14 ± 0,13 миллисекунд (van Belle. 1999). дуги


По отклонениям в собственных движениях между измерениями Тусho-2 и Hipparcos (Makarov & Kaplan 2005) эта звезда была заподозрена в двойственности. Нами не обнаружен спутник с разностью блеска $\Delta R \le 4.8$ звездных величин от 5 до 50 миллисекунд от главной звезды и с $\Delta R \le 4.5$ звездных величин до 1,5 угловых секунд.

Dyachenko et al., 2018, MNRAS, 478, 5683

Кривая покрытия IRC+00213 и подобранная модель однородно яркого диска.

Наблюдения покрытий на БТА 2015-2018

Результаты и ограничения

В 2015-2018 года по наблюдениям лунных покрытий были разрешены диски 7-ми звезд, 4 звезды были разрешены на компоненты, 16 звезд не были разрешены.

Наименьший измеренный диаметр показал K5 гигант DE Psc. По модели однородно яркого диска диаметр составил **1.65 \pm 0.07 мсд**.

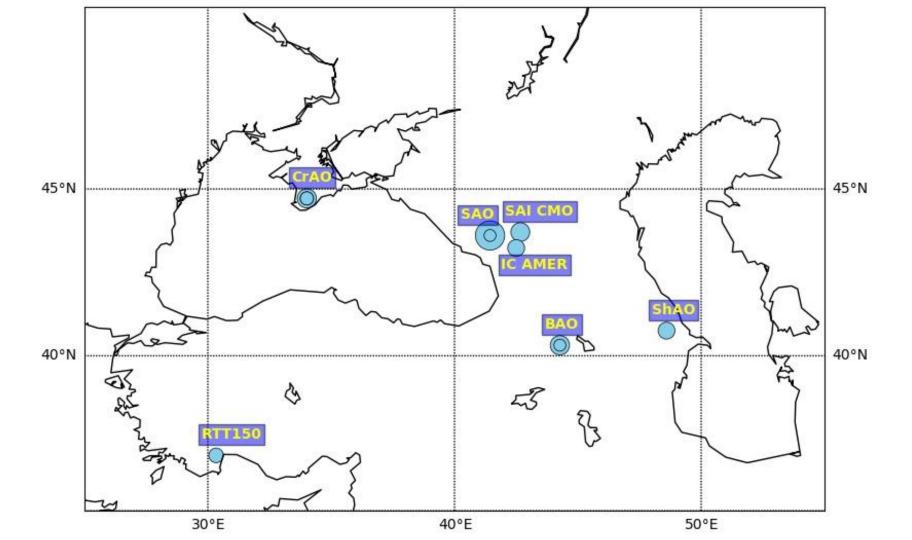
Наибольшая разность блеска среди разрешенных звезд измерена для lam Aqr и составляет 4.95 mag.

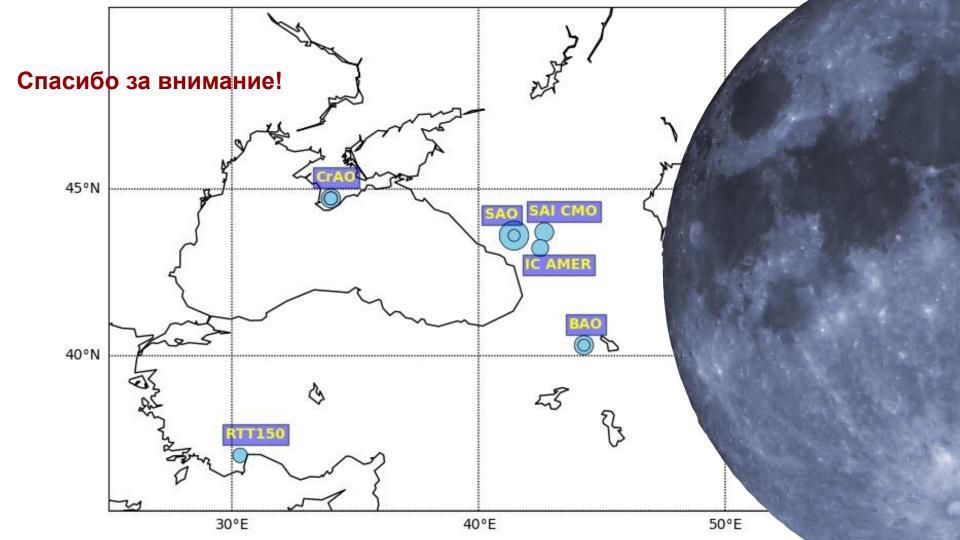
Нами рассчитаны верхние пределы углового разрешения методом описанным в Рикики и др. (1996). Для семи кривых блеска в диапазоне отношений сигнал-шум от 18 до 38 средний предел разрешения составил 1.8 мсд.

Для кривой неразрешенного объекта с **наибольшим отношением сигнал-шум** (SNR = 68) **предел** составил **0.8 мсд**.

Для наблюдений выполненных в широких фильтрах получены значения для **предельной наблюдаемой звездной величины**, которые составили **от 9.2 до 12.7 mag** со средним значением около 11 mag.

Публикации


Richichi, A., Dyachenko, V., Pandey, A. K., Sharma, S., Tasuya, O., Balega, Y., ... & Dhillon, V. S. (2016). Evidence of asymmetries in the Aldebaran photosphere from multiwavelength lunar occultations. *Monthly Notices of the Royal Astronomical Society*, 464(1), 231-236.


Dyachenko, V., Richichi, A., Pandey, A., Sharma, S., Tasuya, O., Balega, Y., ... & Rastegaev, D. (2017, June). Evidence of Asymmetries in the Aldebaran Photosphere from Multi-Wavelength Lunar Occultations. In *Stars: From Collapse to Collapse* (Vol. 510, p. 211).

Dyachenko, V., Richichi, A., Balega, Y., Beskakotov, A., Maksimov, A., & Rastegaev, D. (2017, June). Lunar Occultation and Speckle Interferomerty of lambda Aquarii with the SAO RAS 6-Meter Telescope. In *Stars: From Collapse to Collapse* (Vol. 510, p. 336).

Dyachenko, V., Richichi, A., Balega, Y., Beskakotov, A., Maksimov, A., Mitrofanova, A., & Rastegaev, D. (2018). Lunar occultation observations at the SAO RAS 6-m telescope. *Monthly Notices of the Royal Astronomical Society*, 478(4), 5683-5688.

Dyachenko, V., Richichi, A., Balega, Y., Beskakotov, A., Danilov, A., Komarinskij, S., ... & Shmaylova, E. (2019, July). A Preliminary Orbit for mu Cet from the Observations at the 6-m Telescope. In *Physics of Magnetic Stars* (Vol. 518, p. 156).

