Современная звездная астрономия - 2019

Штеккелевская трехкомпонентная модель Галактики: проблема вертикального распределения плотности

Санкт-Петербургский государственный университет

Громов А.О., Никифоров И.И.

В последнее время штеккелевские потенциалы с новой силой вызывают интерес. Связано это с тем, что в таких потенциалах возможно решение уравнения Гамильтона-Якоби и, как следствие, описание движения в переменных действие-угол. В литературе приводится много различных форм (от простых до сложных) для функции фазовой плотности, выраженных в этих переменных. Широкое распространение такие модели получили в работах Дж. Бинни, однако его численный подход кажется нам не совсем корректным. В связи с этим мы используем аналитический метод, разработанный в своих работах советскими учеными.

В эллиптических координатах

$$\begin{split} R &= z_0 \sqrt{\left(\xi_1^2 - 1\right) \left(1 - \xi_2^2\right)} \,, \quad z = z_0 \xi_1 \xi_2 \,, \\ &\xi_1 \in [1, \infty) \,, \quad \xi_2 \in [-1, 1] \,. \end{split}$$

такие потенциалы представляются в виде

$$\Phi=rac{arphi(\xi_1)-arphi(\xi_2)}{\xi_1^2-\xi_2^2}\,.$$

Для определения функций $\varphi(\xi)$ используется метод В.И. Родионова (1974). Если задан потенциал в экваториальной плоскости, то $\varphi(\xi)$ определяется как

$$\varphi(\xi) = \xi^2 \Phi\left(R = z_0 \sqrt{|\xi^2 - 1|}, z = 0\right)$$

Несмотря на простоту такого подхода, в зарубежной литературе он не используется.

Для описания гало был выбран квази-изотермический потенциал, предложенный Г.Г. Кузминым, Ю.-И.К. Велтманном, П.Л. Теньесом (1986)

$$\Phi_1(R,0) = \Phi_{0,1} \ln \left(1 + \frac{\beta}{w(R)}\right) ,$$

где функция w(R) определяется как

$$w^2(R) = 1 + \kappa_1^2 rac{R^2}{R_0^2} \, .$$

Диск описывается обобщенно-изохронным потенциалом

$$\Phi_2(R,0) = \Phi_{0,2} \frac{\alpha}{(\alpha-1) + \sqrt{1 + \kappa_2^2 R^2}}$$

Для описания центрального балджа выбран потенциал Хенквиста

$$\Phi_3\left(R,0
ight)=-\Phi_{0,3}rac{1}{R+\kappa_3}\,.$$

Оценка параметров потенциала проводилась путем сравнения модельной кривой круговых скоростей с наблюдательными данными. Исходные значения тригонометрических параллаксов и собственных движений представлены в работе Rastorguev A.S., Utkin N.D., Zabolotskikh M.V., et al. Galactic masers: Kinematics, spiral structure and the disk dynamic state // Astrophysical Bulletin, 2017, Vol. 12, is. 2, pp. 122-140.

A.B. Веселовой выборка была разделена на 2 группы: первая включала данные о мазерах в областях образования звезд высокой массы, вторая - данные о мазерах остальных типов.

Оценка проводилась методом наименьших квадратов, то есть минимизировалась функция

$$L^2 = \sum_{i=1}^{N} p_i \cdot (\theta_C(R_i) - \theta_i)^2 ,$$

где
$$p_i = rac{1}{\sigma_i^2}$$
 – весовые коэффициенты,
 $heta_C = -Rrac{d\Phi}{dR}$.

Для установления и учета неоднородности группы не-HMSFR, было решено помимо значения природной дисперсии для общей выборки (HMSFR + не-HMSFR) (назовем это "подход 1"), отдельно искать природные дисперсии для первой группы (HMSFR) $\sigma_{0,1}$ и для второй группы (не-HMSFR) $\sigma_{0,2}$ (назовем это "подход 2"). Весовые коэффициенты были перераспределены: $p_{i,1} = \left(\sigma_i^2 + \sigma_{0,1}^2\right)^{-1}$ - для HMSFR объектов, $p_{i,2} = \left(\sigma_i^2 + \sigma_{0,2}^2\right)^{-1}$ - для не-HMSFR объектов.

Значения $\sigma_{0,1}$ и $\sigma_{0,2}$ определялись из уравнений

$$\sum_{i=1}^{N_1} p_{i,1} \cdot \left(\theta_C(R_i) - \theta_i\right)^2 = \frac{N_1}{N} N_{free},$$
$$\sum_{i=1}^{N_1} p_{i,1} \cdot \left(\theta_C(R_i) - \theta_i\right)^2 - \frac{N_2}{N} N_{free},$$

$$\sum_{i=N_1+1} p_{i,2} \cdot \left(\theta_C(R_i) - \theta_i\right)^2 = \frac{N_2}{N} N_{free} ,$$

где N_1 - количество HMSFR объектов (в данной работе $N_1 = 113$), N_2 - количество не-HMSFR объектов ($N_2 = 33$), а $N = N_1 + N_2$ (N = 146).

Далее фиксировались значения природных дисперсий и заново решалась задача оптимизации по параметрам потенциала. С новыми значениями параметров заново находились природные дисперсии, и так до тех пор, пока не достигнется заданная точность. Для уточнения значений параметров потенциала было решено исключить измерения с избыточными невязками (выбросы). Для этого определялись объекты, для которых

$$\frac{|\theta_{\mathcal{C}}(R_i) - \theta_i|}{\sqrt{\sigma_i^2 + \sigma_{0,i}^2}} > k \,,$$

где k определяется из уравнения

$$(1-\psi(k)) N_{free} = 1$$
,

 $\psi(z) = \sqrt{\frac{2}{\pi}} \int_0^z e^{-\frac{1}{2}t^2} dt$ - интеграл вероятностей, а $\sigma_{0,i}$ может быть σ_0 , $\sigma_{0,1}$ или $\sigma_{0,2}$ в зависимости от подхода и объекта. Далее из отобранных объектов исключались L - L', где L' = 3 объектов с наибольшими невязками. Если среди оставшихся объектов встречаются такие, у которых невязка превосходит значение $k_{0.05}$ (корень уравнения $(1 - \psi(k_{0.05})) N_{free} = 0.05$, то эти объекты также исключаются.

Таблица: Значения параметров после исключения выбросов

Параметр	HMSFR	HMSFR +	HMSFR +
		не-HMSFR	не-HMSFR
		(подход 1)	(подход 2)
σ_{0} км/с	3.85 ± 0.38	6.51 ± 0.56	$\sigma_{0,1} = 4.09 \pm 0.37$
			$\sigma_{0,2}=14.4\pm1.3$
q	$1^{+0}_{-0.018}$	0.8533 ± 0.038	$1^{+0}_{-0.018}$
κ_{1} кпк $^{-1}$	0.01376 ± 0.00027	0.1084 ± 0.0073	0.0829 ± 0.0016
Ф _{0,1} км ² с ⁻²	264.6 ± 6.0	264.7 ± 13.9	265.0 ± 5.3
α	0.2495 ± 0.0046	0.167 ± 0.012	0.1004 ± 0.0029
κ_2 кпк $^{-1}$	0.05455 ± 0.00085	0.0752 ± 0.0025	0.05652 ± 0.00074
Ф _{0,2} км ² с ⁻²	321.2 ± 1.9	309.9 ± 6.5	314.8 ± 1.7
Ф _{0,3} км ² с ⁻²	226.5 ± 9.7	223.7 ± 33.6	225.3 ± 9.8
κ_{3} КПК	0.75 ± 0.12	$\textbf{0.64} \pm \textbf{0.31}$	0.78 ± 0.18

R, кпк

R, кпк

В результате штеккелевского обобщения потенциала получаем эквиденситы. На графике представлены эквиденситы для трехкомпонентной модели и отдельных компонент при

 $\rho = 0.1 \frac{M_{\odot}}{pc^3}.$

Для достижения необходимой сплюснутости диска было решено воспользоваться методами условной оптимизации. Для этого предполагалось, что ход плотности на оси симметрии совпадает с барометрическим законом

$$\rho(z) = \rho_0 \cdot \exp\left(-\frac{z}{h_z}\right),$$

где h_z – параметр полутолщины. По Мохан и Крезе для тонкого диска $h_z = 260 \pm 50$ пк; для толстого диска $h_z = 760 \pm 50$ пк.

После вычисления природной дисперсии ($\sigma_0 = 2.71 \pm 0.20 \text{ км/c}$) и исключения выбросов получились следующие значения параметров: $q = 1^{+0}_{-0.0029}$; $\kappa_1 = 0.1890 \pm 0.0079 \text{ кпк}^{-1}$; $\Phi_{0,1} = 177.9 \pm 1.4 \text{ км}^2 \text{c}^{-2}$; $\alpha = 1.560 \pm 0.052$; $\kappa_2 = 0.3121 \pm 0.0068 \text{ кпк}^{-1}$; $\Phi_{0,2} = 290.6 \pm 2.2 \text{ км}^2 \text{c}^{-2}$; $\Phi_{0,3} = 223.5 \pm 8.3 \text{ км}^2 \text{c}^{-2}$; $\kappa_3 = 0.706 \pm 0.109$.

R, кпк

Определим функции $\varphi(\xi)$ так, чтобы одна из них отвечала за экваториальное распределение, а другая за вертикальное. 1) Обобщаем потенциал из экваториальной плоскости на все пространство с помощью метода эквипотенциалей. Для этого для потенциала в экваториаьной плоскости $\Phi(r)$ необходимо подобрать такую функцию f(R, z), что $r^2 = f(R, z)$. Для диска использовались следующие варианты.

a)
$$f(R, z) = R^2 + z^2 + 2\sqrt{(\varepsilon^2 \mu^2 R^2 + \mu^2 z^2 + \varepsilon^2)}$$
.
6) $f(R, z) = R^2 + z^2 + 2(1 - \varepsilon)\sqrt{(\mu^2 z^2 + \varepsilon^2)}$.
B) $f(R, z) = R^2 + z^2 + 2\mu\sqrt{(1 - \varepsilon)z^2 + \varepsilon^2}$.
r) $f(R, z) = R^2 + n \cdot z^2$.
g) $f(R, z) = R^2 + n + \sqrt{z^2 + b^2}$

Искомых результатов удалось добиться для вариантов б) и в) при $\varepsilon = 0$; $\mu = 1.6$; 1.7. В этом случае они совпадают. При решении данной задачи был переопределен параметр z_0 , который стал равным 2.5 кпк.

Вариант г) дал искомые эквиденситы при n = 3; $z_0 = 2.5$ кпк. Для гало и балджа используем обычное сферическое обобщение $r^2 = R^2 + z^2$ в надежде добиться сферических эквиденсит. 2) Для экваториального распределения функция $\varphi(\xi)$ определяется как раньше:

$$\varphi(\xi) = \xi^2 \Phi\left(R = z_0 \sqrt{\xi^2 - 1}, z = 0\right) \,.$$

Для вертикального распределения:

$$\varphi(\xi) = \Phi(0,0) - (1-\xi^2)\Phi(0,z_0\xi).$$

Эквиденситы для гало

Эквиденситы для балджа

Эквиденситы для диска

В докладе были представлены два альтернативных способа решения вопроса вертикального распределения плотности в штеккелевских моделях диска. Более хорошим нам видится способ с использованием эквипотенциалей, так как в нем кривая вращения сохраняет наилучшее согласие с наблюдательными данными, а также из-за возможности выбора вида эквипотенциалей, что позволяет использовать такой метод для различных видов вертикальных профилей плотности. Кроме того, В.И. Родионов в своей работе отмечал, что модели с двумя различными функциями $\varphi(\xi)$ лучше описывают наблюдательные данные.

Можно полагать, что нам удалось построить трехкомпонентную штеккелевскую модель нашей Галактики, согласующуюся с наблюдательными данными о вращении мазеров, вертикальным распределением плотности и значением пространственной плотности в окрестности Солнца.

Спасибо за внимание!