Моделирование орбитального движения тел вокруг Sgr A* и проблема определения расстояния до центра Галактики

И. И. Никифоров, А. В. Веселова

Санкт-Петербургский государственный университет

«Современная звездная астрономия» Нижний Архыз, САО РАН, 9 октября 2019 г.

Моделирование орбитального движения вокруг Sgr A* и проблема R_0

Классы измерений расстояния до центра Галактики (R_0) по способам определения опорных расстояний.

- Эмпирические:
 - а) относительные (шкалы расстояний с эмпирическими калибровками),
 - б) абсолютные (геометрические расстояния).
- Теоретические (шкалы расстояний с теоретическими калибровками, ныне не актуальные).

Моделирование орбитального движения тел вокруг Sgr A* \to абсолютное расстояние до центрального объекта, т.е. $\approx R_0$, с высокой (!) внутренней точностью.

Мониторинг звездных орбит в центре Галактики. І

 $A_V \sim 30 \div 50 \Longrightarrow$ Наблюдения в ИК-диапазоне: $A_K \approx 3$.

- Спекл-изображения центрального скопления Галактики:
 - с 1991 г. германской группой (MPE–Cologne) на ESO NTT, с 2002 г. — на ESO VLT;
 - с 1995 г. (американской) группой Andrea Ghez (UCLA) на Keck I, Keck II.
 - \Longrightarrow Обнаружение больших собственных движений ($\gtrsim 10^3$ км/с) "S-звезд" вокруг Sgr A*.

[«Sgr A*» $\stackrel{\text{def}}{=}$ компактный темный массивный объект, расположенный в направлении на радиоисточник Sgr A* = «центральная (сверх)массивная черная дыра».]

 Salim & Gould (1999): моделирование вращения S-звезд вокруг Sgr A* (только метод) → возможность точного нахождения абсолютного расстояния до Sgr A*.

Мониторинг звездных орбит в центре Галактики. П

 Начало 2000-х гг.: звезда S2/S0-2 оказалась самой короткопериодической и ярчайшей из близких к Sgr A*.

```
Звезда S0-2 (S2): B2.5V, K=14.2,\ P=16.041\pm0.002 года (Boehle+, 2016; Do+, 2019); K=13.95,\ P=16.052 года (Gillessen+, 2017; GC, 2018); прохождения перицентра: апрель 2002 г., 19.05.2018 09:50 UTC (GC19); a=0.12 сд =0.005 пк \approx 1010 а.е., r_{\rm a}\approx 1910 а.е., r_{\rm p}\approx 110 а.е. (Ghez+, 2008; Plewa, Sari, 2018); a=125.066\pm0.084 мсд, r_{\rm p}=17 св. ч \approx 14 мсд =120 а.е., V_p\approx 7650 км/с (GC, 2018, 2019).
```

• Появление спектроскопии на основе техники адаптивной оптики \to Ghez et al. (2003, *UCLA*): первое измерение лучевой скорости звезды S2 \to Возможность полного решения задачи: в частности, определение R_0 и массы Sgr A*, $\mathcal{M}(\mathrm{BH})$.

Проблема лучевой скорости Sgr A*. I

Первые полные решения (германской группой).

- Eisenhauer et al. (2003) по 5 V_r и 19 (α, δ) : $R_0 = 7.94 \pm 0.42$ кпк, $\mathcal{M}(\mathrm{BH}) = (3.59 \pm 0.59) \times 10^6 \mathcal{M}_\odot$.
- Eisenhauer et al. (2005) πο 7 V_r и 21 (α, δ) : $R_0 = 7.62 \pm 0.32 \text{ кпк, } \mathcal{M}(\mathrm{BH}) = (3.61 \pm 0.32) \times 10^6 \mathcal{M}_\odot \,.$

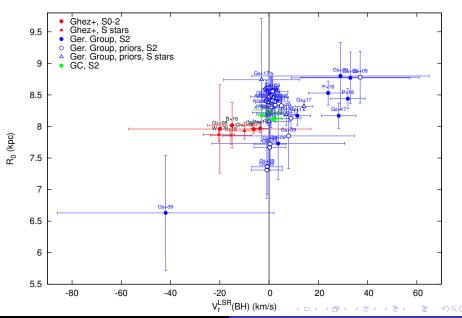
Но это в предположении, что лучевая скорость Sgr A* (фокуса орбиты) $V_r(\mathrm{BH})=0$ км/с относительно МСП (!), основанном на «сильных наблюдательных ограничениях сверху» на собственное движение (!) Sgr A* — 20–60 км/с.

Проблема лучевой скорости Sgr A*. II

N. (2008, 2012): игнорирование ненулевой лучевой скорости фокуса орбиты (Sgr A*) ведет к пропорциональному смещению R_0 (по единственному измерению лучевой скорости звезды $V_{\rm LSR}$):

$$\delta_{\mathsf{sys}} \equiv \frac{\sigma_{\mathsf{sys}}(V_{\mathsf{LSR}})}{|V_{\mathsf{LSR}}|} = \frac{V_{\mathsf{LSR}}(\mathsf{BH})}{|V_{\mathsf{LSR}}|} = \frac{\sigma_{\mathsf{sys}}(R_0)}{R_0}.$$
 (1)

$$V_{
m Sgr~A^*} = 20 \div 60$$
 км/с \Longrightarrow $\sigma_{
m sys}(R_0) = 1.3 \div 5.6\,\% = (0.1 \div 0.45 \ {
m knk}) \cdot (R_0/8 \ {
m knk}).$


Проблема лучевой скорости Sgr A*. III

```
Ghez et al. (2008) по 16 V_r и 27 (l,b) для S0-2 (S2): V_{\rm LSR}({\rm BH}) = -20^{+29}_{-37} км/с, R_0 = 7.96^{+0.57}_{-0.70} кпк, \mathcal{M}({\rm BH}) = (4.07^{+0.52}_{-0.78}) \cdot 10^6 \mathcal{M}_\odot; V_{\rm LSR}({\rm BH}) = (0 км/с) \Longrightarrow R_0 = 8.36^{+0.30}_{-0.44} кпк, \mathcal{M}({\rm BH}) = (4.53^{+0.34}_{-0.55}) \cdot 10^6 \mathcal{M}_\odot.
```

Проблема лучевой скорости Sgr A*. IV

```
Gillessen et al. (2009):
по 6 S-звездам, включая S2
 V_{\rm LSR}(BH) = (0 \pm 5 \text{ km/c}) \Rightarrow
                                                  R_0 = 8.33 \pm 0.17 knk,
                                                   \mathcal{M}(\mathsf{BH}) = (4.31 \pm 0.22) \cdot 10^6 \mathcal{M}_{\odot};
только по S2
 V_{LSR}(BH) = (0 \pm 5 \text{ km/c}) \Rightarrow R_0 = 8.48 \pm 0.38 \text{ kmk},
                                                   \mathcal{M}(\mathsf{BH}) = (4.45 \pm 0.41) \cdot 10^6 \mathcal{M}_{\odot};
 V_{\rm LSR}({\rm BH}) = +29 \pm 36 \, {\rm km/c}
                                                R_0 = 8.80 \pm 0.53 knk,
                                                   \mathcal{M}(\mathsf{Sgr}\;\mathsf{A}*) = (4.93 \pm 0.75) \cdot 10^6 \mathcal{M}_{\odot};
только по S2 (без данных 2002 г.)
 V_{\rm LSR}({\rm BH}) = (0 \pm 5 \text{ km/c}) \Rightarrow
                                                   R_0 = 7.31 \pm 0.45 knk,
                                                   \mathcal{M}(\mathsf{BH}) = (3.51 \pm 0.36) \cdot 10^6 \mathcal{M}_{\odot};
 V_{\rm LSR}({\rm BH}) = -42 \pm 44 \, {\rm km/c}
                                                  R_0 = 6.63 \pm 0.91 knk,
                                                   \mathcal{M}(BH) = (2.85 \pm 0.74) \cdot 10^6 \mathcal{M}_{\odot}.
```

Зависимость R_0 от $V_r^{\mathsf{LSR}}(\mathsf{BH})$

ИК-интерферометрия. І

- 2005 r.: GRAVITY Collaboration = MPE + LESIA (Paris Observatory+) + IPAG (Université Grenoble Alpes+)+ University of Cologne + CENTRA (Universidade de Lisboa, Portugal) + ESO предложила новый инструмент — GRAVITY на интерферометре VLTI ESO, состоящем из четырех 8-м основных телескопов (unit telescopes) ЕЮО; концепция аналогична радиоинтерферометрии, по сравнению с которой в оптическом/ИК-диапазоне есть принципиальные ограничения из-за меньшей длины волны; понадобился значительный технический прогресс, чтобы их преодолеть.
- 2016 г. первый свет; по угловому разрешению инструмент эквивалентен 130-м телескопу, эквивалентная собирающая площадь 200 м 2 (16-м телескоп = 4×8 -м телескоп); предельная величина $K \approx 17$ (на 2.2 мкм).

ИК-интерферометрия. II

• С 2017 г. — GRAVITY Collaboration выполняет оптическую/ИК-интерферометрию в рамках мониторинга орбит S-звезд. Точность астрометрии 20–150 мксд (увеличение точности с эпохи спекл на два порядка, ежедневно видят изменения положения S2).

GRAVITY Collaboration (2019).

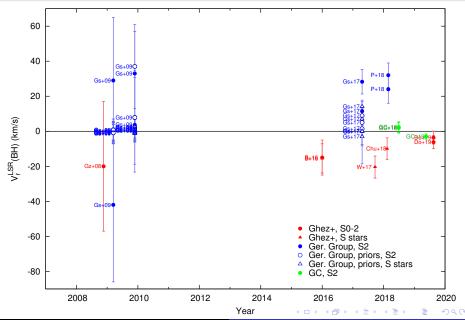
Методы: χ^2 -минимизация, модель шума от нераспознанных звезд. Непосредственный учет релятивистских поправок — гравит. красного смещения и трансверсального доплеровского эффекта. Учет эффекта Рёмера. Поправки первого порядка от Шварцшильдовской метрики.

Для S0-2 в варианте с моделью шума (noise model fit): $R_0=8178\pm13_{\,\mathrm{stat.}}\pm22_{\,\mathrm{sys.}}$ пк $(\pm26\,\,\mathrm{пк})$, $\mathcal{M}(\mathrm{Sgr}\,\,\mathrm{A^*})=(4.152\pm0.014)\times10^6\mathcal{M}_\odot$, $V_r(\mathrm{Sgr}\,\,\mathrm{A^*})=-3.0\pm1.5\,\,\mathrm{кm/c}.$

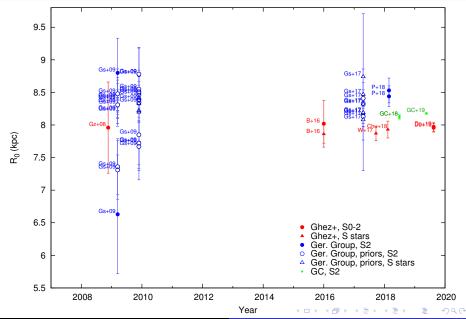
Решает ли это проблему R_0 ? I

Очевидно, еще нет... Что еще нужно?

- Результаты по S2/S0-2 внутри каждой группы должны перестать «эволюционировать» со временем.
- Результаты по S2/S0-2, полученные двумя группами, должны согласовываться друг с другом. (Желательно появление какой-то третьей независимой группы.)
 Но это лишь результаты по одной звезде!
- Должны появится столь же надежные и согласующиеся результаты (в обеих группах) хотя бы по какой-нибудь еще S-звезде или даже по всей совокупности S-звезд, но без S2/S0-2. И эти результаты должны согласовываться с результатами по S2/S0-2.


Решает ли это проблему R_0 ? II

```
GRAVITY Collaboration (2019).
Для S0-2 :
R_0 = 8178 \pm 13_{\text{stat}} \pm 22_{\text{sys}} \text{ rk } (\pm 26 \text{ rk}),
\mathcal{M}(\mathsf{Sgr}\;\mathsf{A}^*) = (4.152 \pm 0.014) \times 10^6 \mathcal{M}_{\odot}
V_r(\text{Sgr A*}) = -3.0 \pm 1.5 \text{ km/c}.
Do+ (2019).
Для S0-2:
R_0 = 7.971 \pm 0.059_{\text{stat.}} \pm 0.032_{\text{sys.}} \text{ nk } (\pm 67 \text{ nk}),
\mathcal{M}(\mathsf{Sgr}\;\mathsf{A}^*) = (3.984 \pm 0.058 \pm 0.026) \times 10^6 \mathcal{M}_{\odot}
V_r(\text{Sgr A*}) = -3.6 \pm 3.7 \text{ km/c}
\Upsilon = 0.80 \pm 0.16 \pm 0.047 (параметр красного смещения).
R_0 = 7.946 \pm 0.050 \, (\text{stat.}) \pm 0.032 \, (\text{sys.}) \, кпк,
\Upsilon = 1.
```


Разница по R_0 значима на уровне $3.6\sigma!$

Эволюция оценок $V_r^{\mathsf{LSR}}(\mathsf{BH})$

Эволюция оценок R_0 по орбитам S-звезд $[V_r^{\mathsf{LSR}}(\mathsf{BH}) eq 0]$

Находится ли Sgr A* (точно) в барицентре Галактики? I

 \implies Можно ли связать с Sgr A* инерциальную систему Галактоцентрических координат?

Есть разные точки зрения.

Reid (2003), Reid & Brunthaler (2004), Reid (2008),
 Bland-Hawthorn & Gerhard (2016), GRAVITY Collaboration
 и др.:

Sgr A* покоится относительно динамического центра Галактики (в пределах неопределенности).

Основной аргумент: незначимо отличное от нуля пекулярное собственное движение Sgr A*, $\mu_{\rm pec}({\rm BH}) = \left(\mu_l^0({\rm BH}), \mu_h^{\rm LSR}({\rm BH})\right).$

Находится ли Sgr A* (точно) в барицентре Галактики? II

• Точное совпадение Sgr A* с барицентром Галактики не доказано.

Blitz (1994): на статус динамического центра могут претендовать и другие центральные концентрации масс, например, Sgr B2. Нельзя исключить, что они совершают осцилляции относительно точки минимума потенциала диска и сфероида Галактики. Центральность Sgr A*, по крайней мере на указанных масштабах, объективно нельзя считать бесспорной.

Аргументы:

- Нулевая вертикальная скорость $V_b^{\mathsf{LSR}}(\mathsf{BH})$ не обязательно означает отсутствие вертикальных осцилляций Sgr A*.
- Современные измерения не исключают $|V_l^0({\sf BH})|$ порядка нескольких км/с.
- $V_b^{\mathsf{LSR}}(\mathsf{BH}) = V_l^0(\mathsf{BH}) = 0$ км/с не исключают ненулевую лучевую скорость $V_r^0(\mathsf{BH}).$

Находится ли Sgr A* (точно) в барицентре Галактики? III

- Кондратьев, Орлов (2008): за счет сближений с шаровыми скоплениями амплитуда дрейфа центральной черной дыры нашей Галактики может достигать нескольких парсек.
- Batcheldor+ (2010): черная дыра в M87 смещена на 6.8 ± 0.8 пк от центра.
- Di Cintio+ (2019) исследовали динамику сверхмассивных черных дыр (СМЧД) в ядрах галактик при помощи полуаналитической модели, включающей динамическое трение и гравитационное взаимодействие со звездами: СМЧД испытывает движение броуновского вида и достигает (наблюдаемого) смещения ≈ 6 пк за 10^{10} лет. Comerford & Greene (2014): активные ядра галактик, испытывающие мерджер, имеют кинематические смещения ядра относительно вмещающей галактики (50 < |v| < 410 км/с).

Данные измерений пекулярной скорости Sgr A*. I

Пекулярная скорость Sgr A*:

$$\mathbf{V}_{\mathrm{pec}}(\mathrm{BH}) = \left(V_r^{\mathrm{LSR}}(\mathrm{BH}), V_l^0(\mathrm{BH}), V_b^{\mathrm{LSR}}(\mathrm{BH})\right).$$

Пекулярная скорость Солнца относительно Местного стандарта покоя (МСП, LSR)

Работа	u_{\odot}^{LSR} ,	v_{\odot}^{LSR} ,	w_{\odot}^{LSR} ,
	км/с	км/с	км/с
Schönrich+ (2010)	$11.10^{+0.69}_{-0.75}$	12.24 ± 0.47	$7.25^{+0.37}_{-0.36}$
Bland-Hawthorn &	10.0 ± 1	11.0 ± 2	7.0 ± 0.5
Gerhard (2016)			

• Гелиоцентр. скорость $V_r(\mathrm{BH}) = V_r^{\mathrm{LSR}}(\mathrm{BH}) - u_{\odot}^{\mathrm{LSR}} \Longrightarrow V_r^{\mathrm{LSR}}(\mathrm{BH}) = V_r(\mathrm{BH}) + u_{\odot}^{\mathrm{LSR}}.$

GRAVITY Collaboration (2019):

$$V_r^{\rm LSR}({\rm BH}) = -3.0 \pm 1.5$$
 км/с при $u_\odot = 11.10$ км/с, $V_r^{\rm LSR}({\rm BH}) = -4.1 \pm 1.5$ км/с при $u_\odot = 10.0$ км/с.

$$(V_r(\mathsf{BH}) = -14.1 \pm 1.5 \; \mathsf{km/c.})$$

Данные измерений пекулярной скорости Sgr A*. II

• $\mu_l(\mathsf{BH}) = \mu_l^0(\mathsf{BH}) - \omega_\odot$, $\omega_\odot = \omega_0 + v_\odot/R_0$, ω_\odot — угловая скорость Солнца, ω_0 — угловая скорость нелокального стандарта покоя центроида звезд, v_\odot — остаточная скорость Солнца относительно этого стандарта \Longrightarrow $\mu_l^0(\mathsf{BH}) = \mu_l(\mathsf{BH}) + \omega_\odot$,

$$V_l^0(\mathsf{BH}) = \mu_l^0(\mathsf{BH}) R_0 = [\mu_l(\mathsf{BH}) + \omega_\odot] R_0.$$

Reid & Brunthaler (2004):

$$\mu_l({\rm BH}) = -6.379 \pm 0.026$$
 мсд/год $= -30.24 \pm 0.12$ км/с/кпк (при $k=4.7406) \Longrightarrow$ При $R_0=8$ кпк

ω_{\odot} ,	$V_0(BH),$
км/с/кпк	$V_0(BH)$, км/с
30.57 ± 0.43	$+2.6 \pm 3.6$
$30.72 \pm \leq 0.47$	$+3.8 \pm \le 3.9$
• • •	• • •
$31.16 \pm \leq 0.54$	$+7.4 \pm \leq 4.4$
	κ м/с/кпк 30.57 ± 0.43 $30.72 \pm \leq 0.47$

Данные измерений пекулярной скорости Sgr A*. III

•
$$\mu_b({\rm BH}) = \mu_b^{\rm LSR}({\rm BH}) - w_\odot^{\rm LSR}/R_0 \Longrightarrow V_b^{\rm LSR}({\rm BH}) = V_b({\rm BH}) + w_\odot^{\rm LSR} = \mu_b({\rm BH})R_0 + w_\odot^{\rm LSR}.$$
 Reid & Brunthaler (2004): $\mu_b({\rm BH}) = -0.202 \pm 0.019~{\rm Mcd/rod} = -0.958 \pm 0.090~{\rm km/c/knk} \Longrightarrow$

w_{\odot}^{LSR} ,	$V_b^{LSR}(BH)$, км/с			
км/с	$R_0 = 7.8$ кпк	$R_0=8$ кпк	$R_0=8.2$ кпк	
7.25	-0.22 ± 0.70	-0.41 ± 0.72	-0.61 ± 0.74	
7.0	-0.47 ± 0.70	-0.66 ± 0.72	-0.86 ± 0.74	

Возможное орбитальное движение Sgr A* в сглаженном потенциале Галактики

Задача: оценить размах возможных осцилляций центральной черной дыры в регулярном поле Галактики при современных оценках пекулярной скорости Sgr A*.

Пробное тело помещалось в центр Галактики:

$$(x_0, y_0, z_0) = (0, 0, 0)$$

Численное интегрирование уравнений движения.

Начальные скорости пробного тела (в км/с)

Варианты	$V_r^{LSR}(BH)$	$V_l^0({\sf BH})$	$V_b^{LSR}(BH)$
«Малый номинал»	-3.0	+3	
«Большой номинал»	-4.1	+7	-0.9
$\ll 2\sigma$ »	-7.1	+16	-2.3

Модельный потенциал Галактики. І

Диск + сферическое гало + эллипсоидальный бар + сфероидальный балдж (Casetti-Dinescu+, 2013, кроме балджа).

Диск: потенциал Миямото-Нагаи

$$\Phi(R,z) = -\frac{GM_{d}}{\sqrt{R^2 + \left(a + \sqrt{z^2 + b^2}\right)^2}},$$
 (2)

a=6.5 кпк, b=0.26 кпк, $M_{\rm d}=1.1\cdot 10^{11}M_{\odot}$; R — галактоосевое расстояние, $R_0=8$ кпк.

Гало: логарифмическая модель

$$\Phi(r) = v_h^2 \ln(r^2 + d^2), \tag{3}$$

r — галактоцентрическое расстояние; d = 12 кпк, $v_{\rm h} = 121.9$ км/с.

Модельный потенциал Галактики. II

Бар: трехосный эллипсоид с неоднородным распределением плотности — потенциал Феррера

$$\rho(m^2) = \begin{cases} \rho_0 \left(1 - m^2 / a_1^2 \right)^n, & m \leqslant a_1, \\ 0, & m \geqslant a_1; \end{cases} \qquad n = 2; \qquad (4)$$

$$m^2 \equiv a_1^2 \sum_{i=1}^3 \frac{x_i^2}{a_i^2},\tag{5}$$

 x_1, x_2, x_3 — координаты в системе отсчета бара $(x_1$ — вдоль большой полуоси, x_2 — вдоль малой полуоси, x_3 — вдоль оси z);

 $a_1=3.14$ кпк, $a_2=1.178$ кпк, $a_3=0.81$ кпк — полуоси бара вдоль x_1,x_2,x_3 соответственно.

 $arphi_0=25^\circ$ — угол наклона бара к линии центр—антицентр (галактоцентрическая долгота ближнего к Солнцу края бара). $\omega_{\mathsf{bar}}=20,\ 40,\ 60\ \mathsf{кm/c/knk}$ — угловая скорость вращения бара.

Модельный потенциал Галактики. III

Балдж

Модель Хернквиста, использованная Casetti-Dinescu+ (2013),

$$\Phi(r) = -\frac{GM_{\rm b}}{r+c}\,,\tag{6}$$

оказалась непригодной для целей настоящего исследования \Longrightarrow Рассмотрено три других варианта задания потенциала балджа.

• Модель балджа Миямото-Нагаи

$$\Phi(R,z) = -\frac{GM_{\rm b}}{\sqrt{R^2 + \left(a_1 + \sqrt{z^2 + b_1^2}\right)^2}}.$$
 (7)

где $a_1=0.04$ кпк, $b_1=0.2$ кпк для $R_0=8.5$ кпк (Нинкович, 1992) были умножены на поправочный коэффициент 8/8.5.

Модельный потенциал Галактики. IV

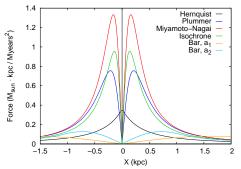
• Сфера Пламмера

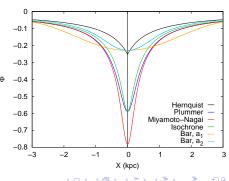
$$\Phi(r) = -\frac{GM_{\rm b}}{\sqrt{r^2 + c_1^2}},\tag{8}$$

 $c_1 = 0.3$ кпк (Кондратьев, Орлов, 2008).

• Изохронный потенциал (Binney, Tremaine, 2008)

$$\Phi(r) = -\frac{GM_{\rm b}}{b_1 + \sqrt{b_1^2 + r^2}},\tag{9}$$

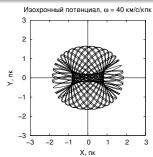

где величина $b_1=0.15$ кпк выбрана такой, чтобы значение потенциала в минимуме было близко к значению потенциала Пламмера, а сила принимала промежуточное значение между значениями в модели Пламмера и Миямото—Нагаи.

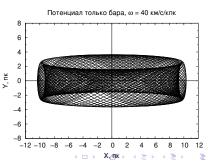

Модельный потенциал Галактики. V

Bland-Hawthorn & Gerhard (2016): для массы классического балджа можно указать только верхний предел. Варианты:

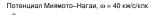
- Примем максимальный вклад балджа в массу центральной компоненты \Longrightarrow массу бара будем считать равной 80% приведенного в работе Касетти-Динеску значения $3.12\cdot 10^{10}M_{\odot}$ и массу балджа равной $0.78\cdot 10^{10}M_{\odot}$.
- Компоненты балджа нет, только бар (наиболее вероятная модель). Тогда его масса $3.9 \cdot 10^{10} M_{\odot}$.

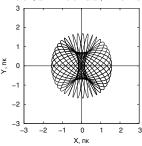
Сила и потенциал для моделей балджа и бара.



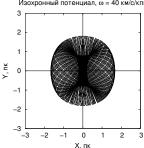


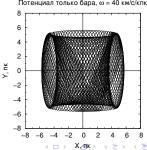
$V_r^{\mathsf{LSR}}(\mathsf{BH}) = -3$ км/с, $V_l^0(\mathsf{BH}) = 0$ км/с



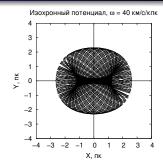


$V_r^{\mathsf{LSR}}(\mathsf{BH}) = 0$ км/с, $V_l^0(\mathsf{BH}) = +3$ км/с

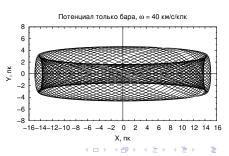



Потенциал Пламмера, $\omega = 40$ км/с/кпк

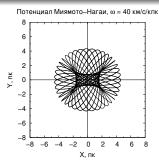
Изохронный потенциал, ω = 40 км/c/кпк

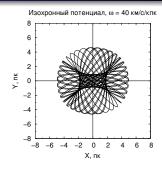


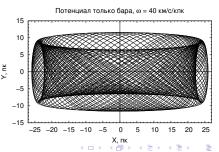
Потенциал только бара, ω = 40 км/с/кпк



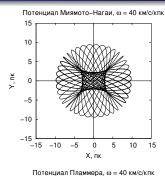
$V_r^{\mathsf{LSR}}(\mathsf{BH}) = -3$ км/с, $V_l^0(\mathsf{BH}) = +3$ км/с







$V_r^{ m LSR}({ m BH}) = -4.1$ км/с, $V_l^0({ m BH}) = +7$ км/с

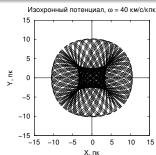


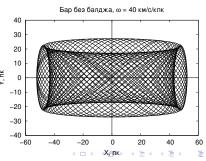
$V_r^{\mathsf{LSR}}(\mathsf{BH}) = -7$ км/с, $V_l^0(\mathsf{BH}) = +16$ км/с (2σ)

15

10


5


-5


-10

-15

-15 -10

Х. пк

10 15

Положение Sgr A* относительно средней плоскости диска Галактики

Sgr A*:
$$(l,b)=(-0.056,-0.046)$$
 (Reid & Brunthaler, 2004) $\Longrightarrow Z(\mathsf{BH})=(-6.4~\mathsf{nK})\cdot(R_0/8~\mathsf{KNK}).$ $Z_0=25\pm 5~\mathsf{nK}$ (Jurić+, 2008) \Longrightarrow Тогда расстояние от Sgr A* до плоскости диска $z(\mathsf{BH})=Z_0+Z(\mathsf{BH})=18.6\pm 5~\mathsf{nK}.$ Варианты: $z(\mathsf{BH})=18.6~\mathsf{nK}$ («номинал»), $z(\mathsf{BH})=9~\mathsf{nK}$ (« σ »).

Параметры вертикальных колебаний Sgr A*

Начальная скорость — нулевая.

Начальные координаты: $(x_0, y_0, z_0) = (0, 0, z_0)$.

 T_0 — период вертикальных колебаний,

 $W_{\mathsf{max}} = \max |W|$ — амплитуда изменения вертикальной скорости W,

 ΔT_W — продолжительность фазы $|W| \leq 2.7$ км/с.

Модель балджа	T_0 ,	W_{max} ,	ΔT_W ,	ΔT_W ,		
	млн. лет	км/с	млн. лет	$\%$ от T_0		
$\overline{z_0} =$	$z_0 = 18.6$ пк (номинал)					
Модель Пламмера	4.85	23.5	0.31	6.4		
Модель Миямото–Нагаи	3.13	36.4	0.13	4.1		
Изохронный потенциал	3.65	32.0	0.18	4.8		
Балджа нет (только бар)	9.27	12.6	1.11	12.0		
$z_0=9.0$ пк (2σ)						
Модель Пламмера	4.84	11.1	0.64	13.4		
Модель Миямото-Нагаи	3.12	17.3	0.27	8.5		
Изохронный потенциал	3.64	14.8	0.36	9.9		
Балджа нет (только бар)	9.27	5.8	2.39	25.9		

Выводы І

- Несмотря на прорывные успехи проекта GRAVITY и американской группы проблему расстояния до центра Галактики (R_0) пока нельзя считать решенной, даже в понимании под центром именно Sgr A*.
- При современных оценках пекулярной скорости центральной черной дыры ее осцилляции в регулярном поле в плоскости Галактики могут приводить к смещениям этого объекта относительно барицентра до десятков парсек.

Выводы II

- Масштаб осцилляций сильно зависит от наличия/отсутствия компоненты классического балджа в дополнение к бару: при номинальных значениях компонент пекулярной скорости Sgr A* размах колебаний не превышает б пк в случае наличия балджа и доходит до 25 пк, если балджа нет; при компонентах скорости в пределах уровня значимости 2σ колебания могут составлять 15 и 50 пк соответственно.
- Несмотря на малые значения измеренной линейной вертикальной скорости центральной черной дыры, сейчас нельзя исключить вертикальные ее осцилляции, т.е. ее расположение вне плоскости диска Галактики.

В настоящий момент нельзя сделать окончательные выводы, но прогрессе в этом направлении может быть очень быстрым...

