#### ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи УДК 524.827

# Найден Ярослав Владимирович

# Исследование космического микроволнового фона на низких пространственных частотах

Специальность 01.03.02 — астрофизика и звездная астрономия

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Нижний Архыз — 2014

Работа выполнена в Специальной астрофизической обсерватории Российской академии наук.

| Научный руководитель:  | доктор физико-математических наук, ведущий научный сотрудник Верходанов Олег Васильевич                                                                                                                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Официальные оппоненты: | Байкова Аниса Талгатовна,<br>доктор физико-математических наук,<br>главный научный сотрудник (ГАО РАН)<br>Иванчик Александр Владимирович,<br>доктор физико-математических наук,<br>старший научный сотрудник (Физико-<br>технический институт им. А.Ф.Иоффе РАН),<br>доцент |
| Ведущая организация:   | Санкт-Петербургский Государственный Университет                                                                                                                                                                                                                             |

Защита состоится 18 апреля 2014 г. в 13 часов 30 минут на заседании диссертационного совета Д 002.203.01 на базе Специальной астрофизической обсерватории РАН по адресу: Нижний Архыз, Зеленчукский район, Карачаево-Черкесская республика, Россия 369167.

С диссертацией можно ознакомиться в библиотеке САО РАН.

Автореферат разослан \_\_\_\_\_ 2014 г.

Ученый секретарь диссертационного совета Д 002.203.01, к.ф.-м.н.

Шолухова Ольга Николаевна

# Общая характеристика работы

#### Актуальность темы

Благодаря современным космологическим экспериментам таким, как Wilkinson Microwave Anisotropy Probe (WMAP) [1—5] и Planck [6—12], посвященным исследованию реликтового излучения и давшим очень точные измерения анизотропии микроволнового фона, научное сообщество перешло в так называемую эпоху "прецизионной космологии". Это позволило не только получить космологические параметры с большой точностью независимым способом, но и наложить ограничения на ряд теорий.

Согласно стандартной согласованной инфляционной  $\Lambda$ CDM– космологической модели [13—15], реликтовое излучение должно быть изотропным в очень высокой степени, а флуктуации его температуры изотропны статистически.

При анализе реликтового излучения используется разложение данных по сферическим гармоникам (мультиполям):

$$\Delta T(\theta, \phi) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta, \phi),$$

где  $Y_{\ell m}(\theta, \phi)$  — сферические функции с номерами  $\ell$  и m, а  $a_{\ell m}$  — коэффициенты разложения. С использованием последних строиться угловой спектр мощности  $C_{\ell}$ , который служит основной характеристикой Cosmic Microwave Background (CMB), следующим образом:

$$C_{\ell} = \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} |a_{\ell m}|^2.$$

Угловой спектр мощности космического микроволнового фона приведен на рисунке 1. Разброс амплитуд низких мультиполей обусловлен космической вариацией [16] из-за малого числа гармоник.



Рис. 1: Угловой спектр мощности, полученный в результате наблюдений космической миссии Planck [6].

Область  $\ell \leq 50$  оказывается наиболее интересной для исследований не только из-за большого разброса значений на низких мультполях, но и потому, что открытые для свободного доступа карты реликтового излучения Internal Linear Combination (ILC) WMAP ограничены угловым разрешением  $\ell_{max} = 100$  [1]. Были получены карты большего разрешения, но они были признаны недостаточно надежными [2–4]. Однако этот факт не сильно сказался на определении основных космологических параметров, т.к. последние определяются точками спектра мощности до первого пика включительно, при фиксированной космологической модели (см. рисунок 1), а все свойства этого пика описываются как раз на разрешении  $\ell \leq 220$ . Поэтому предоставленная карта вполне пригодна для использования с точки зрения космологии. Кроме того, это ограничение не мешает определять спектр мощности реликтового излучения другим путем — через так называемый псевдо–спектр мощности  $C_{\ell}^{pseudo}$ , который вычисляется для сигнала на неполной сфере.

После появления данных WMAP был опубликованы статьи, в которых обсуждались отклонения карты ILC от гауссовости — статистическая анизотропия. Оказалось, что статистические свойства различных площадок неожиданно сильно отличаются, что не согласуется с простыми инфляционными сценариями [15]. Это может быть показателем того, что следует рассматривать более сложные инфляционные теории [17—19].

Дадим обзор некоторых обнаруженных проявлений негауссовости.

Впервые негауссовость была обнаружена с помощью фазового анализа [20—22]. Другие методы (вейвлет анализ, биспектры, функционалы минковского и метод случайного блуждания<sup>1</sup>) показали аналогичные резульаты.

Когда рассматривают негауссовость низких мультиполей реликтового излучения, связанной с отклонением распределения пятен от изотропии, говорят о статистической анизотропии сигнала. Наиболее известными статистическими проявлениями анизотропии являются:

- 1. "Ось Зла" [23],
- 2. "Холодное Пятно" [24],
- 3. "нечетность Вселенной" [25, 26],
- 4. "горячий галактический Юг" [27].

На сегодня опубликовано более 500 работ, которые посвящены негауссовым свойствам реликтового фона. Поскольку эти свойства могут свидетельствовать об остаточном сигнале фоновых компонент в реликтовом излучении или накладывать ограничения на космологические модели, что подчеркивает актуальность данной темы.

<sup>&</sup>lt;sup>1</sup>Random Walking Method

#### Цели и задачи работы

Основной целью работы является анализ статистических свойств анизотропии микроволнового фона. С этим связана вторая цель — создание новых методов и инструментов для исследования реликтового излучения.

Если говорить об асимметрии сигнала, то она может являться признаком проявления разных физически свойств ближнего окружений: пыли, холодных объектов, магнитного поле и др. Низкие мультиполи имеют структуру, схожую с галактической. Поэтому важной задачей является изучение возможного вклада галактических компонент в микроволновый фон. Существование одного "Холодное пятно" не исключает и других пятен, природа которых может оказаться космологической. Кроме того, применение специализированных алгоритмов исследования статистической анизотропии (эстиматоров) поможет в проверке космологического принципа.

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Разработка новых методов анализа данных на сфере.
- 2. Разработка новых инструментов для исследования реликтового излучения, вклада фоновых компонент и точечных источников.
- 3. Моделирование данных в рамках стандартной *ACDM*–космологии.

# Основные положения, выносимые на защиту

- 1. Обнаружение максимального масштаба ячейки неоднородности крупномасштабной структуры  $D \sim 60 \,\text{Mpc}$  на z = 0.8 и 1.9 по данным реликтового излучения и каталогом галактик SDSS.
- 2. Обнаружение статистической анизотропии карты ILC WMAP, связанной с галактическими источниками излучения, на основе кор-

реляции с данным миллиметрового каталога PCCS и ИК каталога 2MASX.

- 3. Обнаружение статистической анизотропии карты ILC WMAP, связанной с источниками излучения в Солнечной системе, на основе корреляции с даннами ИК каталога FSC.
- 4. Разработка метода поиска статистической анизотропии с помощью специализированных (математических) эстиматоров и создание системы представления оценок эстиматоров на картах всего неба.
- 5. Пакет для анализа данных на сфере GlesPy и, разработанная с его помощью, web-система расчета и выбора площадок на небе из сферических гармоник.

## Научная новизна

- 1. Впервые определен максимальный размер ячейки неоднородности по микроволновому фону и каталогу SDSS.
- Впервые предложены и реализованы алгоритмы анализа статистической анизотропии с двумерными картографирующими эстиматорами.
- 3. Впервые создан вычислительный web-сервер, предоставляющий возможность строить и анализировать карты как всего неба, так и выбранных участков по гармоническим данным.

# Практическая значимость

Показано, что для объяснения аномалий низких гармоник не требуется привлечения сложных моделей инфляции. Фазовые характеристи-

ки гармоник демонстрируют, что эти гармоники могут определяться локальным распределением сигнала.

Практическая ценность работы состоит в разработке программного обеспечения, которое может быть использовано как для исследования аномальных зон и гармоник на картах реликтового излучения, так и для исследования отдельных источников и их отождествления, а также в широком классе других схожих задач.

### Достоверность

Достоверность полученных выводов подтверждается выводами из исследований других авторов, основанных на других данных, оценках или предположениях, использованием проверенных методов анализа гауссовости случайных полей и сравнением результатов с теоретическими модельными данными. Кроме того, показателем достоверности результатов является их апробации на российских и международных конференциях и школах и публикация основных положений в журнале, рекомендованном ВАК и индексируемом WoS, "Астрофизический бюллетень".

# Апробация работы

Основные результаты работы докладывались на семинарах ГАО РАН, САО РАН, Физико-технического института им. А.Ф. Иоффе и на восьми российских и международных конференциях и школах:

- XXVII конференция "Актуальные Проблемы Внегалактической Астрономии" (2010)
- XXVIII конференция "Актуальные Проблемы Внегалактической Астрономии" (2011)

- XXX конференция "Актуальные Проблемы Внегалактической Астрономии" (2013)
- XV международная школа "Частицы и Космология" (2011)
- Всероссийская астрономическая конференция "От эпохи Галилея до наших дней" (2010)
- Всероссийская астрономическая конференция "Многоликая Вселенная" (2013)
- Ш-я Молодежная Научная Конференция ГАО РАН (2010)
- IV-я Молодежная Научная Конференция ГАО РАН (2012)

# Личный вклад

- Равный вклад в совместном обсуждении постановки задачи.
- Разработка программного обеспечения на языке python для пакета анализа и моделирования карт микроволнового фона.
- Обработка различных карт микроволнового фона.
- Создание web-системы анализа данных.
- Равный вклад в подготовке публикации результатов научных исследований.

# Объем и структура работы

Диссертация состоит из введения, пяти глав и заключения. Полный объем диссертации 123 стр. текста с 53 рис. и 9 табл. (включая список сокращений). Список литературы содержит 140 наименований.

# Содержание работы

Во **Введении** показывается актуальность работы, формулируются цели, новизна, степень достоверности, практическая значимость, основные результаты, выносимые на защиту и апробации.

В **Главе 1** приведено математическое введение в анализ данных на сфере и описана схема пикселизации неба Гаусса–Лежандра, которая была использована в работе.

В Главе 2 изложены методы, которые были разработаны и модифицированы в ходе работы над диссертацией для исследования статистических свойств реликтового излучения. В первую очередь, это модифицированный метод мозаичной корреляции, который использовался для получения большинства результатов. Другой метод анализа гауссовости СМВ — картографирущие эстиматоры. В работе впервые строятся два эстиматора, которые основаны на статистическом разбросе углового спектра мощности  $C_{\ell}$ . Завершает главу описание системы Фурье–анализа одномерных сечений, которая была разработана для исследования влияния процедуры разделения компонент на одномерные сечения карт анизотропии при варьировании космологических параметров.

Далее, в Главе 3 описываются и обсуждаются четыре основных результата реализации методов, которые были введены в диссертации в главе 2. Это

- 1. Осевые симметрии в данных WMAP ILC, которые были обнаружены путем выделения симметричных зон относительно галактической и экваториальной плоскости. Показано, что низкие мультиполи сильно влияют на антикорреляцию выбранных областей.
- Корреляция с инфракрасными и субмиллиметровыми источниками микроволнового фона на мультиполях ℓ = 3 (с PCCS) и 6 (с FSC), может быть свидетельством вклада галактических и внегалактических компонент в реликтовое излучение.

- 3. Диполь карты эстиматора статистического разброса уголового спектра мощности полушарий, совпадает с полюсами эклиптики.
- 4. Корреляционные свойства СМВ, 2MRS и SDSS позволяют с помощью пятипараметрической корреляционной функции оценить наибольший масштаб ячейки неоднородности в различные космологические эпохи.

В Главе 4 описывается вычислительная web-система анализа данных на сфере на основе схемы пикселизации неба Gauss-Legendre Sky Pixelization (GLESP). Она содержит инструкции для работы и изложение архитектуры web-системы. Отметим основные особенности, которые отличают ее, например, от SkyView, и делают ее актуальной:

- синтез карты протяженного излучения на полном небе из сферических гармоник в сетке пикселизации GLESP,
- сглаживание их гауссовой диаграммой направленности с различным угловым разрешением в пространстве мультиполей,
- выделение области неба с заданными координатами в галактической системе координат.

В Главе 5 дается описание пакета GlesPy, который был разработан в диссертации и открыт для публичного доступа. Обсуждается его глобальная архитектура, набор классов и их методы с UML-диаграммами.

В Заключении сформулированы основные результаты, выводы работы, рекомендации и перспективы дальнейшей разработки темы.

# Публикации

Основные результаты по теме диссертации изложены в восьми печатных работах, которые опубликованы в журнале, рекомендованном ВАК и индексируемом WoS, "Астрофизический бюллетень".

- Berkutov V. S., Naiden Y. V., Verkhodanov O. V. Axial symmetries in WMAP ILC data // Astrophysical Bulletin. – 2010. – T. 65. – C. 187–195. – DOI: 10.1134/ \$1990341310020082.
- Naiden Y. V., Verkhodanov O. V. Determination of microwave background map inhomogeneity from angular power spectrum // Astrophysical Bulletin. – 2011. – T. 66. – C. 345–354. – DOI: 10.1134/S1990341311030072.
- Verkhodanov O. V., Keshelava T. V., Naiden Y. V. On two low harmonics of CMB correlation maps // Astrophysical Bulletin. 2012. T. 67. C. 245–252. DOI: 10.1134/S1990341312030017.
- Verkhodanov O. V., Naiden Y. V. Does the contribution of infrared and submillimeter sources reveal itself at low harmonics of the CMB? // Astrophysical Bulletin. – 2012. – T. 67. – C. 1–16. – DOI: 10.1134/S1990341312010014.
- Naiden Y. V., Verkhodanov O. V. Power spectrum distortions in CMB map one-dimensional cross-sections depending on the cosmological model // Astrophysical Bulletin. 2013. T. 68. C. 226–235. DOI: 10.1134/S1990341313020119.
- Naiden Y. V., Verkhodanov O. V. Correlation properties of the WMAP CMB and 2MRS and SDSS catalogs at different redshifts // Astrophysical Bulletin. – 2013. – T. 68. – C. 471–480. – DOI: 10.1134/S1990341313040093.
- Naiden Y. V., Verkhodanov O. V. Power spectrum distortions in CMB map one-dimensional cross-sections depending on the cosmological model. II // Astrophysical Bulletin. – 2013. – T. 68. – C. 465–470. – DOI: 10.1134 / S1990341313040081.
- Database of Extended Radiation Maps and Its Access System / O. V. Verkhodanov [и др.] // Astrophysical Bulletin. – 2014. – Т. 69. – С. 113–120.

#### Заключение

В диссертации были разработаны новые методы анализа СМВ и впервые применены для исследования статистических свойств сигнала на сфере. Среди них — метод мозаичной корреляции (в т.ч. его обобщение в качестве пятимерной корреляционной функции), картографирующие эстиматоры и система Фурье–анализа одномерных сечений СМВ.

При использовании этих методов получены следующие основные результаты:

- На основе анализа показано, что одномерные сечения карт реликтового излучения мало чувствительны к изменению космологических параметров.
- Численные исследования показали, что на низких мультиполях ℓ ≤ 100 в космическом микроволновом фоне присутствует вклад галактических компонент и протяженных источников Солнечной системы.
- 3. Для выполнения поставленных задач была создана вычислительная web-система анализа данных на сфере и пакет GlesPy, предоставляющий возможность использовать процедуры GLESP на языке python.
- 4. Использование патимерной корреляционной функции позволило оценить наибольший масштаб ячейки неоднородсти в некоторые космологические эпохи.

Эпоху, в которую мы живем, называют эпохой точной космологии благодаря таким космическим экспериментам, как WMAP и Planck. На этих обсерваториях были произведены наблюдения космического микроволнового фона с большой точностью и на высоком разрешении (до  $\ell_{max} = 2200$  [6]). Однако карты реликтового излучения, представленные в публичных архивах этих экспериментов, включают статистически анизотропный сигнал на низких гармониках, что может говорить о вкладе фоновых компонент или сложных космологических сценариях. Поэтому изучение свойств реликтового излучения и развитие математического аппарата разделения фоновых компонент остается приоритетной задачей космологии и по сей день.

#### Список сокращений

| CMB                  | Cosmic Microwave Background, cc. 3, 10–  |
|----------------------|------------------------------------------|
|                      | 13                                       |
| FSC                  | Faint Source Catalog, cc. 7, 10          |
| GLESP                | Gauss-Legendre Sky Pixelization, cc. 11, |
|                      | 13                                       |
| GlesPy               | Gauss-Legendre Sky Pixelization with     |
|                      | Python, cc. 7, 11, 13                    |
| ILC                  | Internal Linear Combination, cc. 4–7, 10 |
| $\Lambda \text{CDM}$ | $\Lambda$ Cold Dark Matter, cc. 3, 6     |
| 2MASX                | 2Micron All-Sky Survey, Extended source  |
|                      | catalogue, c. 7                          |
| 2MRS                 | The 2MASS Redshift Survey, c. 11         |
| PCCS                 | Planck Catalogue of Compact Sources,     |
|                      | cc. 7, 10                                |
| SDSS                 | Sloan Digital Sky Survey, cc. 6, 7, 11   |
| UML                  | Unified Modeling Language, c. 11         |
| WMAP                 | Wilkinson Microwave Anisotropy Probe,    |
|                      | cc. 3–7, 10, 13                          |
| WoS                  | Web of Science, cc. 8, 11                |

# Список литературы

- First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results / С. L. Bennett [и др.] // ApJS. – 2003. – Т. 148. – С. 1–27. – DOI: 10.1086/377253. – eprint: astro-ph/0302207.
- Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis / G. Hinshaw [и др.] // ApJS. – 2007. – Т. 170. – С. 288– 334. – DOI: 10.1086/513698. – eprint: astro-ph/0603451.

- Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results / G. Hinshaw [и др.] // ApJS. – 2009. – Т. 180. – C. 225–245. – DOI: 10.1088/0067-0049/180/2/225. – arXiv: 0803. 0732.
- 4. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results / N. Jarosik [и др.] // ApJS. 2011. Т. 192. С. 14. DOI: 10.1088/0067-0049/192/2/14. arXiv: 1001.4744 [astro-ph.CO].
- Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results / C. L. Bennett [и др.] // ApJS. – 2013. – Т. 208. – С. 20. – DOI: 10.1088/0067-0049/208/2/20. – arXiv: 1212.5225 [astroph.CO].
- 6. Planck 2013 results. I. Overview of products and scientific results / Planck Collaboration [и др.] // ArXiv e-prints. 2013. eprint: 1303.5062.
- Planck 2013 results. XXIII. Isotropy and statistics of the CMB / Planck Collaboration [и др.] // ArXiv e-prints. – 2013. – arXiv: 1303.5083 [astroph.CO].
- Planck 2013 results. II. Low Frequency Instrument data processing / Planck Collaboration [и др.] // ArXiv e-prints. — 2013. — arXiv: 1303.5063 [astroph.IM].
- Planck 2013 results. VI. High Frequency Instrument data processing / Planck Collaboration [и др.] // ArXiv e-prints. — 2013. — arXiv: 1303.5067 [astroph.CO].
- 10. Planck 2013 results. XI. All-sky model of thermal dust emission / Planck Collaboration [и др.] // ArXiv e-prints. — 2013. — arXiv: 1312.1300 [astroph.GA].
- 11. Planck 2013 results. XII. Component separation / Planck Collaboration [и др.] // ArXiv e-prints. 2013. arXiv: 1303.5072 [astro-ph.CO].
- 12. Planck 2013 results. XIII. Galactic CO emission / Planck Collaboration [и др.] // ArXiv e-prints. – 2013. – arXiv: 1303.5073 [astro-ph.GA].

- Starobinskii A. A. Spectrum of relict gravitational radiation and the early state of the universe // Soviet Journal of Experimental and Theoretical Physics Letters. – 1979. – T. 30. – C. 682.
- 14. Sato K. First-order phase transition of a vacuum and the expansion of the Universe // MNRAS. 1981. T. 195. C. 467-479.
- Linde A. D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems // Physics Letters B. – 1982. – T. 108. – C. 389–393. – DOI: 10.1016/0370– 2693(82)91219–9.
- 16. Cosmic Variance in the Great Observatories Origins Deep Survey / R. S. Somerville [и др.] // ApJ. – 2004. – Т. 600. – С. L171–L174. – DOI: 10.1086/378628. – eprint: astro-ph/0309071.
- Allen T. J., Grinstein B., Wise M. B. Non-gaussian density perturbations in inflationary cosmologies // Physics Letters B. - 1987. - T. 197. - C. 66-70. -DOI: 10.1016/0370-2693(87)90343-1.
- Linde A., Mukhanov V. Non-Gaussian isocurvature perturbations from inflation // Phys. Rev. D. - 1997. - T. 56. - C. 535. - DOI: 10.1103/PhysRevD.56. R535. - eprint: astro-ph/9610219.
- Bernardeau F., Uzan J.-P. Non-Gaussianity in multifield inflation // Phys. Rev. D. –
  2002. T. 66, № 10. C. 103506. DOI: 10.1103 / PhysRevD. 66.
  103506. eprint: hep-ph/0207295.
- 20. Non-Gaussianity of the Derived Maps from the First-Year Wilkinson Microwave Anisotropy Probe Data / L.-Y. Chiang [и др.] // ApJ. – 2003. – Т. 590. – С. L65– L68. – DOI: 10.1086/376822. – eprint: astro-ph/0303643.
- Naselsky P. D., Doroshkevich A. G., Verkhodanov O. V. Phase Cross-Correlation of the Wilkinson Microwave Anisotropy Probe Internal Linear Combination Map and Foregrounds // ApJ. - 2003. - T. 599. - C. L53-L56. - DOI: 10.1086/ 381249. - eprint: astro-ph/0310542.
- Phase correlations in cosmic microwave background temperature maps / P. Coles [и др.] // MNRAS. 2004. Т. 350. С. 989-1004. DOI: 10.1111/j.1365-2966.2004.07706.x. eprint: astro-ph/0310252.

- Land K., Magueijo J. Examination of Evidence for a Preferred Axis in the Cosmic Radiation Anisotropy // Physical Review Letters. - 2005. - T. 95, № 7. -C. 071301. - DOI: 10.1103/PhysRevLett.95.071301. - eprint: astroph/0502237.
- 24. Detection of a non-Gaussian spot in WMAP / M. Cruz [и др.] // MNRAS. 2005. Т. 356. С. 29–40. DOI: 10.1111/j.1365-2966.2004. 08419.x. eprint: astro-ph/0405341.
- 25. Land K., Magueijo J. Is the Universe odd? // Physical Review D. 2005. T. 72,
  № 10. C. 101302. DOI: 10.1103/PhysRevD. 72.101302. eprint: astro-ph/0507289.
- 26. Kim J., Naselsky P. Anomalous parity asymmetry of WMAP 7-year power spectrum data at low multipoles: Is it cosmological or systematics? // Phys. Rev. D. 2010. T. 82, № 6. C. 063002. DOI: 10.1103/PhysRevD.82.063002. arXiv: 1002.0148 [astro-ph.CO].
- 27. Planck 2013 results. XXVI. Background geometry and topology of the Universe / Planck Collaboration [и др.] // ArXiv e-prints. 2013. arXiv: 1303.5086 [astro-ph.CO].

Бесплатно

Найден Ярослав Владимирович

# Исследование космического микроволнового фона на низких пространственных частотах

Зак. №195сУч. изд. л. - 3.2Тираж 100Специальная астрофизическая обсерватория РАН