Lenticular galaxies of the Local Universe: Effect of environments Olga K. Sil'chenko

Sternberg Astronomical Institute, Lomonosov MSU

What is lenticular galaxies?

De Vaucouleurs, G., in Handbuch der Physik, v. 53, pp.275-310, 1959:

Referring ('courtesy of') to A. Sandage collecting the notes by Hubble after 1935: "S0 objects have the smooth appearance of ellipticals, but a luminosity distribution more like that of spirals, although no spiral arms are visible..."

Hubble distinguished two groups of S0s:S0(1): smooth lens and envelope;S0(2): some structure in the envelope in the form of a dark zone and ring.

S0: red disks, ANY-sized bulges

Observations

Multi-band photometry: LCO robotic 1m telescope network (Cerro Tololo, Sutherland, Siding Spring, MacDonald...) SDSS-filters g and r, exposure times 900x3 (g) and 600x3(r) s 26 arcminute field of view, seeing 1.2" to 2.5", 0.39"/px Long-slit spectroscopy: SALT/RSS and BTA/ Scorpio

Sample

Photometry: 60 S0 galaxies in the clusters (Fornax, Hydra, Centaurus, Antlia, ...) and 42 isolated S0s (II>2.5) – Silchenko, Kniazev, Chudakova (2018, 2019).

Long-slit spectroscopy: 23 S0 galaxies in the (same) clusters and 20 isolated S0s – Silchenko et al. in preparation, Katkov et al. (2014, 2015).

Honestly, only the isolated S0 sample is sampled within the Local Universe (v_r <4000 km/s); the clusters are up to D=70 Mpc.

Samples

Photo

Spectro

solated

Photometry: radial structure

Erwin et al. 2012

Origin of different radial-profile types

Initial conditions or evolution? Struck & Elmegreen (2017): initially exponential gaseous disks, then stellar disks keep the shape. \blacktriangleright Evolution: I type \rightarrow III type, Younger et al. (2007) – pure stellar dynamics. Evolution: II type \rightarrow I type, Clarke et al. (2017) – gaseous dynamics, dense environments.

Radial profiles differ in the field and in clusters

Erwin et al. 2012, 24 S0 in the Virgo cluster

Our analysis of the radial profiles

Single-scale exponential profile

Truncated profiles, Type II

Radial profile type proportions:

Clusters:

- Type I 45% +/- 6% (46%+/-10% Virgo after Erwin et al. 2012);
- Type II 5%+/-3% (0%+/-4% Virgo after Erwin et al. 2012).

Isolated:

Type I – 28%+/-7% (26%+/-6% Erwin+ in the field).
Type II – 17%+/-6% (28%+/-6% Erwin+ in the field).
SO THERE IS AN EFFECT OF ENVIRONMENT!

Inclination of a thick round disk:

 $1-(b/a)^2$

 $sin^2 i = ------$ 1-q²

where b/a – the isophote axis ratio, q – the relative thickness of a disk (in terms by E. Hubble 1926)

New approach to determine inclination (Chudakova and Sil'chenko 2014)

٨Ô

Radius (arc sec)

By confronting isophote ellipticity and ellipticity of the h azimuthal distribution:

$$q = \sqrt{1 - \frac{2e_I - e_I^2}{2e_h - e_h^2}}$$

Относительная толщина Диска вычисляется из соотношения эллиптичности изофоты и масштабного коэффициента

Различие эллиптичности изофоты и шкалы

To compare disk thicknesses in S0s in clusters and isolated ones

(red vertical lines – inner segments of the Type II type)

Environment effect:

Isolated S0 are thicker than those in clusters!
 Clarke et al. (2017) dynamical evolution: no cluster (tidal or ram pressure) effect on the disk thickness.

Accretion?

Many blue details inside the isolated S0s

(Minor)merger features in the isolated S0s

NGC 6014

Spectral features of accretion in the isolated S0s: counterrotating or polar gas (Katkov et al.2014,2015)

UGC 9519

Sos: disk age distributions

Isolated

Nearby clusters

Disks are even older than the bulges among the S0s in dense environments

Three samples:

- Isolated S0s (Katkov, Kniazev, Sil'chenko 2015);
- S0s in rich groups (Sil'chenko et al. 2012 and after that);
 - S0s in Virgo
 (Johnston et al.
 2014 + 4 S0s
 observed with the SCORPIO-2).

S0 evolution in different environments:

- After initial star formation in the disks at z~2, any quenching -> thick stellar disks with the present ages > 10 Gyr.
- ► In clusters, there is no outer gas accretion → old stellar disks remain intact.

 In the field, accretion of outer cold gas is common → secondary star formation in the disks (in rings).
 Minor merging → disk thickening (e.g.Walker et al. 1996).

Пропорции типов у галактик поля

Laine et al. 2014