

Stellar and dark matter density in the Local Universe

I. D. Karachentsev¹, <u>K. N. Telikova²</u>

¹Special Astrophysical Observatory RAS, Nizhnij Arkhyz, Russia ²Ioffe Institute, St. Petersburg, Russia

Diversity of the Local Universe 30 September - 4 October 2019

Introduction

Global cosmic values

 $\Omega_* \approx 0.27\%$ (Fukugita&Peebles2004)

 $\Omega_m \approx 0.32$ (Planck2014)

Local Universe

- 1. Local Volume
- 2. Local Supercluster
- 3. D < 135 Mpc

$V_{LG} < 600 \text{ km s}^{-1}$

Data from Updated Nearby Galaxy Catalog (UNGC) (Karachentsev, Makarov, & Kaisina, 2013)

- Accurately measured galaxy distances
- Kinematics
- K-band magnitudes were measured in 2MASS Redshift Survey (*Jarrett et al., 2000*)

Galaxy	D	V_{LG}	$\log M_*$	log M _{tot}
	Mpc	km s ⁻¹	M_{\odot}	M_{\odot}
Milky Way	0.01	-65	10.70	12.07
M31	0.77	-29	10.79	12.23
NGC5128	3.68	310	10.89	12.89
M81	3.70	104	10.95	12.69
NGC253	3.70	276	10.98	12.18
NGC4826	4.41	365	10.49	10.78
NGC4736	4.41	352	10.56	12.43
NGC5236	4.90	307	10.86	12.02
M101	6.95	378	10.79	12.17
NGC4258	7.66	506	10.92	12.50
NGC3627	8.32	579	10.82	12.16
M51	8.40	538	10.97	11.78
NGC2903	8.87	443	10.82	11.68
NGC5055	9.04	562	11.00	12.49
NGC4594	9.55	894	11.30	13.45
NGC6744	9.51	706	10.91	11.72
NGC3115	9.68	439	10.95	12.54
NGC2683	9.82	334	10.81	12.13
NGC891	9.95	736	10.98	11.90
NGC628	10.2	827	10.60	11.66
NGC3379	11.0	774	10.92	13.23

Local Supercluster, D < 40 Mpc

 $V_{LG} < 3500 \text{ km s}^{-1}$

Data from catalog of galaxy groups made by Kourkchi & Tully (2017) (KT17)

Local Supercluster, D < 40 Mpc

Local Supercluster, D < 40 Mpc

$$\Omega_m = 0.12 - 0.14$$

 $V_{LG} < 10000 \text{ km s}^{-1}$

Data from catalog of galaxy groups made by Tully (2015b) (hereafter T15b)

- 2MASS Redshift Survey observational limit 11.75^m
 Correction factor for total luminosity of the group
- Dynamical total mass and total mass inferred from mass-to-light ratio

$$\Omega_* = 0.20 - 0.24\%$$

$$\Omega_m = 0.05 - 0.16$$

 Difference between Ω_m for Northern and Southern Galactic hemispheres decreases with increasing D and at D > 70 Mpc it becomes within (10 – 15)% of the mean value.

Summary

- In the Local Volume stellar density is $\Omega_* = 0.44$ % and total density is $\Omega_m = 0.17$
- Within the sphere with radius of 40 Mpc stellar density is similar to its global value $\Omega_* = 0.24 0.32\%$, while total density is $\Omega_m = 0.12 0.14$, which more than 2 times less than that of the global value
- Within the sphere with radius of 135 Mpc because of the observational complications estimations of Ω_* and Ω_m have significant systematic uncertainties and drop to the values $\Omega_* = 0.20 0.24\%$, $\Omega_m = 0.05 0.16$
- Major part of the cosmic dark matter locates outside the virial and collapsing zones of groups and clusters

Summary

- In the Local Volume stellar density is $\Omega_* = 0.44$ % and total density is $\Omega_m = 0.17$
- Within the sphere with radius of 40 Mpc stellar density is similar to its global value $\Omega_* = 0.24 0.32\%$, while total density is $\Omega_m = 0.12 0.14$, which more than 2 times less than that of the global value
- Within the sphere with radius of 135 Mpc because of the observational complications estimations of Ω_* and Ω_m have significant systematic uncertainties and drop to the values $\Omega_* = 0.20 0.24\%$, $\Omega_m = 0.05 0.16$
- Major part of the cosmic dark matter locates outside the virial and collapsing zones of groups and clusters

Thank you!

Densities in log-log scale

$$\boldsymbol{M}_* = \boldsymbol{M}_{\odot} \frac{L_K}{L_{\odot}}$$

Local Supercluster, D < 40 Mpc

