МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (CAO PAH)

ПРИНЯТО		УТВЕРЖДА	Ю
решением Ученого совета		Директор СА	О РАН,
CAO PAH № 404			_ / Г.Г. Валявин /
от «20» июня 2022 г.		«»	2022 г.
PAE	БОЧАЯ ПРОІ	TPAMMA	
по дисциплине «СПЕКТРО	ОСКОПИЯ ЗВ	<u>ЕЗД И ЗВЕЗДН</u> А	<u>«RИДОПОВЕ RA</u>
Научная специальность	1.3.1. ФИЗИ	КА КОСМОСА,	АСТРОНОМИЯ
Объем занятий: Итого	72 ч. 1	1/3нед.	
Из них:			
Лекций	22 ч.		
Практических занятий	16 ч.		

34 ч.

Самостоятельной работы

Рабочая программа составлена в соответствии с федеральными государственными требованиями, утвержденными приказом Министерства науки и высшего образования Российской Федерации от 20 октября 2021 года № 951, утвержденной Программой кандидатского экзамена по специальной дисциплине, соответствующей научной специальности 1.3.1. Физика космоса, астрономия, принятой на заседании Ученого совета САО РАН.

Автор: доктор физ.-мат. наук, профессор, главный научный сотрудник лаборатории астроспектроскопии В.Г. Клочкова.

1. Общие положения

Отдельным вопросом спектроскопических проявлений эволюции звезд посвящены тысячи разрозненных публикаций и несколько монографий, материал последних в основном устарел. В последние 30 лет практически не выполняются переводы англоязычной учебной литературы по данному направлению (да и трудно выделить соответствующую зарубежную монографию). В отечественных университетах отсутствует учебно-научная база, позволяющая проводить первичную подготовку специалистов по исследованию звездной эволюции методами спектроскопии высокого разрешения. Поэтому при подготовке специалистов высшей квалификации используем оригинальные научные работы, выполненные автором в лаборатории астроспектроскопии САО. Практически весь используемый спектральный материал получен на БТА. Под руководством автора защищено несколько кандидатских диссертаций в этом направлении. Автор являлся научным консультантом и докторской диссертации, защищенной по спектроскопии звёзд. При разработке курса использованы также методические материалы, подготовленные автором по программам базовой кафедры оптики и спектроскопии Ставропольского государственного университета при САО РАН (2005-2011гг).

Дисциплина «Спектроскопия звезд и звездная эволюция» — 2.1.5. относится к элективным дисциплинам образовательного компонента.

Предшествующими курсами, на которых непосредственно базируется дисциплина «Спектроскопия звезд и звездная эволюция», являются базовые дисциплины бакалавриата, магистратуры и специалитета и элективная дисциплина 2.1.2. «Иностранный язык».

Дисциплина «Спектроскопия звезд и звездная эволюция» логически, содержательно и методически связана с последующими компонентами программы аспирантуры – 1.1. «Научная деятельность, направленная на подготовку диссертации на соискание научной степени кандидата наук к защите», 1.2. «Подготовка публикаций и (или) заявок на патенты на изобретения, полезные модели, свидетельства о государственной регистрации программ для электронных вычислительных машин, баз данных», 2.1.3. «Физика космоса, астрономия», факультативными дисциплинами 2.1.4. (Ф) «Интерферометрические методы в спектроскопии звезд», 2.1.7. (Ф) «Исследования звездного магнетизма», 2.1.8. (Ф) «История астрономической спектроскопии», 2.1.9. (Ф) «Лабораторная и астрономическая спектроскопия с высоким и средним разрешением», $2.1.13.(\Phi)$ «Орбитальные стратосферные астрономические спектрографы», 2.2. «Практика», 3. «Итоговая аттестация».

2. Планируемые результаты освоения дисциплины, соотнесённые с планируемыми

результатами освоения программы

pc.	результатами освоения программы					
№ п/п	Результаты освоения дисциплины	Результаты освоения программы				
Асп	ирант должен знать:					
1.	перечисленную учебно-методическую и					
	научную литературу, включая основные ссылки в последней;	РД-1, РД-2				
	особенности получения спектроскопических					
2.	данных с высоким разрешением на телескопах САО РАН;	РД-1, РД-2, РД-3, РД-5				
3.	общеупотребительные методы моделирования звездных атмосфер;	РД-3, РД-4, РД-5				
4.	правила использования спектроскопических архивных данных;	РД-1, РД-4				
5.	основные публикации научного	РД-2				
٥.	руководителя;	1 7 2				
Асп	ирант должен уметь:					
	применять системы обработки					
6.	астрономических данных (SIMBAD, MIDAS, IRAF, DECH);	РД-1, РД-2, РД-3, РД-4				
	использовать графический материал,					
7.	получаемый в результате обработки данных,	РД-3				
	при подготовке публикуемых результатов;					
	осуществлять поиск дополнительной					
	информации (оригинальные исследования,					
8.	инструкции по использованию	РД-3, РД-4				
	наблюдательных данных), в т.ч. и					
	неоцифрованной.					
Асп	ирант должен владеть:					
9.	пакетами обработки спектроскопических	РД-3, РД-5				
	данных;					
10.	методами статистической обработки данных;	РД-1, РД-3				
11.	методами моделей атмосфер в приближении ЛТР.	РД-1, РД-3				

3. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 1 1/3 недели (72 часа).

№ п/ п	Наименование разделов и тем дисциплины, их краткое содержание	рабо само лов и тем работу тру		ную нтов и	Формы контроля успеваемости
		Лек.	Практ. зан-я	Сам. раб.	
1.	Наблюдаемые свойства одиночных звезд. Различные классификации спектров звезд.	2		4	

№ п/ п	Наименование разделов и тем дисциплины, их краткое содержание	Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)		Формы контроля успеваемости
	Диаграмма Герцшпрунга-Рессела. Функция светимости и начальная функция масс звезд. Пульсирующие и переменные звезды. Вращение звезд. Химический состав звезд. Новые и сверхновые звезды. Планетарные туманности.			
2.	Наблюдаемые свойства двойных звезд. Основные свойства двойных звезд. Затменные двойные звезды. Спектральнодвойные звезды. Визуально-двойные звезды. Кратные звезды. Распределение двойных звезд по массам, отношениям масс компонент и большим полуосям орбит.	2	4	
3.	Звездообразование в Галактике. Звездные скопления, ассоциации. Образование гигантских молекулярных облаков. Иерархическое звездообразование.	2	4	
4.	Эволюция массивных одиночных звезд, M>8 MO. Горение водорода и гелия в ядре. Влияние потери вещества на эволюцию массивных звезд. Поздние стадии эволюции массивных звезд. Взрыв сверхновой.	2	4	
5.	Эволюция звезд умеренных масс. Эволюция звезд M<2.3MO. Эволюция звезд с 2.3MO <m<8mo. td="" вырожденных="" гигантами="" звезды="" и="" карликов.="" красными="" массы="" образование="" планетарных="" планеты.<="" потеря="" сверхгигантами.="" туманностей=""><td>2</td><td>4</td><td></td></m<8mo.>	2	4	
6.	Модели атмосфер и основные физические соотношения. Методы определения эффективной температуры. Методы определения ускорения силы тяжести log g.	4	4	
7.	Методы определения металличности. Методы определения содержания химических элементов. Методы определения скоростей осевого вращения звезд. Методы определения турбулентной скорости.	4	4	
8.	Методы определения масс звезд. Методы определения радиусов звезд. Методы определения светимости звезд. Методы определения возраста звезд.	4	6	

№ п/ п	Наименование разделов и тем дисциплины, их краткое содержание	Виды учебной работы, включая самостоятельную работу аспирантов и трудоемкость (в часах)		Формы контроля успеваемости	
9.	Отождествление деталей в спектрах звезд разных типов. Измерение параметров отдельных спектральных линий (глубины, полуширины, эквивалентные ширины, доплеровские смещения, параметры асимметрии).		4		текущий контроль
10.	Работа с критериями спектральной классификации.		2		текущий контроль
11.	Исследование сложных (абсорбционно-эмиссионных) профилей линий.		2		текущий контроль
12.	Определение фундаментальных параметров звездных атмосфер по совокупности измеренных спектральных линий.		4		текущий контроль
13.	Определение содержания химических элементов по совокупности измеренных спектральных линий.		4		текущий контроль итоговый зачет
	Итого:	22 ч	16 ч	34 ч	72 ч

4. Наименование и содержание практических занятий

$N_{\underline{0}}$	Наименование работы	Кол-	Форма проведения
Π/Π		во	
		часов	
1.	Тема 9. Отождествление деталей в спектрах звезд разных типов. Измерение параметров отдельных спектральных линий (глубины, полуширины, эквивалентные ширины, доплеровские смещения, параметры асимметрии).	4	разноуровневые индивидуальные задания
2.	Тема 10. Работа с критериями спектральной классификации.	2	разноуровневые индивидуальные задания
3.	Тема 11. Исследование сложных (абсорбционно-эмиссионных) профилей линий.	2	разноуровневые индивидуальные задания
4.	Тема 12. Определение фундаментальных параметров звездных атмосфер по совокупности измеренных спектральных линий.	4	разноуровневые индивидуальные задания
5.	Тема 13. Определение содержания химических элементов по совокупности измеренных спектральных линий.	4	разноуровневые индивидуальные задания итоговый зачет
_	Итого:	16 ч	

5. Текущий контроль успеваемости и промежуточная аттестация

5.1. Форма проведения текущего контроля успеваемости

Текущий контроль осуществляется по результатам работы на практических занятиях. Промежуточный контроль – быстрый опрос на лекциях.

Текущий контроль работы аспирантов проводится преподавателем, ведущим занятия по дисциплине.

Итоговый зачет проводится в рамках промежуточной аттестации.

Перед итоговым зачетом по дисциплине аспиранту необходимо полностью выполнить практические работы по дисциплине. При наличии задолженностей по практическим работам аспирант к итоговому зачету не допускается.

5.2. Форма проведения промежуточной аттестации

Промежуточная аттестация проводится в форме итогового зачета по дисциплине. Итоговый зачет по дисциплине предусмотрен в устной форме.

Оценивание знаний обучающегося происходит по результатам устного ответа на два вопроса из перечня. На подготовку к ответу отводится 30 минут. При подготовке к ответу аспиранту предоставляется право пользования программой дисциплины.

Итоговый контроль работы аспирантов проводится преподавателем, ведущим занятия по дисциплине.

При сдаче итогового зачета по дисциплине отметка *«зачет»* выставляется, если аспирант демонстрирует знание основного материала, излагает его, применяет теоретические положения при решении практических задач.

Отметка *«незачет»* выставляется в случае, если аспирант не знает значительной части программного материала, допускает существенные ошибки в изложении основного материала, не может увязывать теорию с практикой.

5.3. Вопросы к зачету

- 1. Наблюдаемые свойства одиночных звезд. Различные классификации спектров звезд. Диаграмма Герцшпрунга-Рессела. Функция светимости и начальная функция масс звезд. Пульсирующие и переменные звезды. Вращение звезд. Химический состав звезд. Новые и сверхновые звезды. Планетарные туманности.
- 2. Наблюдаемые свойства двойных звезд. Основные свойства двойных звезд. Затменные двойные звезды. Спектрально-двойные звезды. Визуально-двойные звезды. Кратные звезды. Распределение двойных звезд по массам, отношениям масс компонент и большим полуосям орбит.
- 3. Звездообразование в Галактике. Звездные скопления, ассоциации. Образование гигантских молекулярных облаков. Иерархическое звездообразование.
- 4. Эволюция массивных одиночных звезд, $M > 8 M\Theta$. Горение водорода и гелия в ядре. Влияние потери вещества на эволюцию массивных звезд. Поздние стадии эволюции массивных звезд. Взрыв сверхновой.
- 5. Эволюция звезд умеренных масс. Эволюция звезд $M<2.3M\Theta$. Эволюция звезд с $2.3M\Theta<M<8M\Theta$. Потеря массы красными гигантами и сверхгигантами. Образование планетарных туманностей и вырожденных карликов. Звезды и планеты.
- 6. Модели атмосфер и основные физические соотношения. Методы определения эффективной температуры. Методы определения ускорения силы тяжести log g.
- 7. Методы определения металличности. Методы определения содержания химических элементов. Методы определения скоростей осевого вращения звезд. Методы определения турбулентной скорости.
- 8. Методы определения масс звезд. Методы определения радиусов звезд. Методы определения светимости звезд. Методы определения возраста звезд.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Перечень основной литературы, необходимой для освоения дисциплины

- 1. Д. Грей. Наблюдения и анализ звездных атмосфер. «Мир», М., 1980, 496с.
- 2. К. де Ягер. Звезды наибольшей светимости. «Мир», М., 1984, 493с.
- 3. С. Потташ. Планетарные туманности. «Мир», М., 1987, 351с.
- 4. А.Г.Масевич, А.В.Тутуков. Эволюция звезд: теория и наблюдения. «Наука», ФМ, М., 1988, 280с.
- 5. И.М. Копылов. Избранные труды. Изд. САО РАН, Нижний Архыз, 2002, 381с.
- 6. В.Г. Клочкова, В.Е.Панчук, «От звезды к планетарной туманности». Природа. 2002. No.3. c.28-37.
- 7. Н.А.Сахибуллин. Методы моделирования в астрофизике. II. Определение фундаментальных параметров звезд. «Фэн», Казань, 2003, 388с.
- 8. В.Г.Клочкова. 6-м телескоп в поиске проявления эволюции звезд вблизи AGB. В сб. «САО РАН 40 лет». Нижний Архыз, 2006, с.107-148.
- 9. В.Г.Клочкова. «Ярче ста тысяч солнц». Природа. 2009. No.11. с.12-19.
- 10. Г.А.Шайн. Избранные труды. «Наукова думка», Киев, 2012. 629с.
- 11. В.Г.Клочкова. Исследование физики и эволюции звезд на 6-м телескопе БТА. Астрофизический бюллетень. 2012. т.67. No.4. с.399–428.
- 12. V.G. Klochkova. Circumstellar envelope manifestations in the optical spectra of evolved stars. Astrophysical Bulletin, 2014. Vol. 69, Iss. 3, pp.279-295.
- 13. V.G. Klochkova, V.E. Panchuk, M.V. Yushkin. Results of Selected Stellar Spectroscopy Programs at the 6-m Telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences Performed with the NES Echelle Spectrograph. Astrophysical Bulletin, 2022. Vol. 77, Iss. 1, p.84-93.

6.2. Перечень дополнительной литературы, рекомендуемой для освоения дисциплины

- 1. И.С. Шкловский. Проблемы современной астрофизики. Наука, ФМ, М., 1982, 223с.
- 2. Н.Г. Бочкарев, Р.Е. Гершберг, М.А. Лившиц. Идеи С.Б. Пикельнера в контексте современной астрофизики. Космосинформ, М., 2014, 137с.
- 3. Г.Н. Ресселл, Р.С. Дэган, Дж.К. Стюарт. Астрономия. Т.ІІ. Астрофизика, звездная астрономия. ОНТИ-НКТП-СССР, М.-Л., 1935, 416с.
- 4. А.Унзольд. Физика звездных атмосфер. ИЛ, М., 1949. 630с.
- 5. Звездные атмосферы. Под. ред. Дж. Л. Гринстейна. ИЛ, М., 1963, 706с.
- 6. В. Е. Панчук, Ю. Ю. Балега, В. Г. Клочкова, М. Е. Сачков. Исследование экзопланет спектроскопическими методами. Успехи физических наук, 2020, т.190, с.605–626.
- 7. V.G. Klochkova, Yu.V. Sheldakova, V.V. Vlasyuk, A.V. Kudryashov, Improving the Efficiency of High-Resolution Spectroscopy on the 6-m Telescope Using Adaptive Optics Techniques. Astrophysical Bulletin, 2020. Vol. 75, Iss. 4, p.468-481.

6.3. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- Сеть ActpoHet: http://www.astronet.ru/db/msg/1169494/index.html#Contents
- Астрофизическая информационная система ADS https://ui.adsabs.harvard.edu/
- База данных по внегалактическим объектам: http://ned.ipac.caltech.edu/
- База данных объектов за пределами Солнечной с-мы SIMBAD http://simbad.u-strasbg.fr/simbad/
- Звёздный каталог VIZIER http://vizier.u-strasbg.fr/viz-bin/VizieR
- Цифровой обзор неба DSS http://archive.eso.org/dss/dss
- Слоановский цифровой небесный обзор SDSS: http://www.sdss.org/

7. Перечень информационных технологий, включая перечень программного обеспечения и информационных справочных систем, профессиональных баз данных

Системы обработки астрономических данных SIMBAD, MIDAS, IRAF, DECH;

8. Материально-техническое обеспечение

- экран;
- мультимедийный проектор;
- компьютер;
- выход в Интернет и интранет САО РАН в лабораторных корпусах;
- сервер общего доступа для обработки и хранения данных;
- текстовые и электронные ресурсы Научной библиотеки САО РАН;
- оборудование научно-исследовательских лабораторий САО РАН.

9. Особенности освоения дисциплины лицами с ограниченными возможностями здоровья

Освоение дисциплины лицами с ограниченными возможностями здоровья осуществляется на основе адаптированной рабочей программы с использованием специальных методов обучения и дидактических материалов, составленных с учетом особенностей психофизического развития, индивидуальных возможностей и состояния здоровья таких аспирантов.

Адаптированная рабочая программа входит в структуру адаптированной программы аспирантуры, которая разрабатывается под потребности конкретного обучающегося по его личному заявлению или решению комиссии по определению вида инклюзии и условий обучения сразу после зачисления такого аспиранта на 1 курс.

Порядок разработки адаптированной рабочей программы определяется локальным нормативным актом.