УДК 524.35-337

МАГНИТНЫЕ ПОЛЯ СР-ЗВЕЗД В АССОЦИАЦИИ ОРИОН ОВ1. III. ЗВЕЗДЫ ПОДГРУППЫ (a)

© 2019 И. И. Романюк^{*}, Е. А. Семенко, А. В. Моисеева, И. А. Якунин, Д. О. Кудрявцев

Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия

Поступила в редакцию 27 июня 2018 года; после доработки 8 декабря 2018 года; принята к публикации 8 декабря 2018 года

В статье представлены результаты измерений магнитных полей 10 химически пекулярных звезд подгруппы (а) ассоциации Орион OB1: HD 33917, HD 34859, HD 35008, HD 35039, HD 35177, HD 35575, HD 35730, HD 36549, HD 38912, HD 294046. Наблюдения проведены с анализатором круговой поляризации на Основном звездном спектрографе 6-м телескопа САО РАН. Магнитное поле найдено у четырех звезд, у шести остальных его величина оказалась ниже предела обнаружения.

Ключевые слова: звезды: магнитное поле — звезды: химически пекулярные

1. ВВЕДЕНИЕ

Статья продолжает серию работ по комплексному изучению магнитных химически пекулярных звезд ассоциации Орион OB1. Цели исследования представлены в работе [1]. Методика наблюдений и анализа данных описана в работах [2–4], где также приводятся результаты поиска и изучения магнитных полей звезд ассоциации, в том числе 9 химически пекулярных. В частности, HD 34736 была нами обнаружена как магнитная и впервые построена ее кривая переменности продольного поля $B_{\rm e}$ с фазой периода вращения, также найденного нами.

Настоящей статьей мы завершаем цикл работ по исследованию магнетизма химически пекулярных звезд подгруппы (а) ассоциации Орион OB1 и приводим результаты измерений магнитных полей 10 звезд, которые ранее не исследовались на предмет наличия магнитного поля.

2. НАБЛЮДЕНИЯ И МЕТОДИКА ОБРАБОТКИ

Наблюдения выполнялись на Основном звездном спектрографе БТА [5] с анализатором круговой поляризации Чунтонова [6]. Современное состояние спектрографа описано на сайте: https://www.sao.ru/hq/lizm/mss/ru/. Обработка спектров и измерения магнитных полей выполнялись с использованием пакета программ "Б-шай спертовае ти

E-mail: roman@sao.ru

Кудрявцева [7]. В статьях [2–4] методика анализа и обработки данных описана более подробно.

Для измерений продольной компоненты поля *B_e* мы использовали два способа:

1) модифицированный метод Бэбкока [7], основанный на измерениях сдвигов центров тяжести (centers of gravity (cog)) поляризованных по кругу компонент линий;

2) метод регрессии [8], основанный на исследовании круговой поляризации спектральных линий.

В случае малого количества линий и их большой ширины, что имеет место для массивных звезд в Орионе, второй метод дает более устойчивые результаты.

Результаты измерений магнитных полей 10 химически пекулярных звезд ассоциации Орион OB1 (подгруппа (а)) представлены в таблице. В ее колонках приведены: (1) название звезды, (2) юлианская дата наблюдений, (3) продольный компонент поля $B_e(z)$, который получен по классическому методу [7] и его ошибка σ , (4) продольный компонент поля $B_e(r)$, полученный по методу регрессии [8] и его ошибка σ , — оба по линиям металлов и (5) $B_e(h)$ — продольный компонент поля, полученный по линии водорода $H\beta$, (6) S/N — отношение сигнал/шум для каждого спектра, звездочкой (*) отмечены новые магнитные звезды.

Звозво	ID $(2450000\pm)$	$B(z) \perp z$ Γ_2	$B(\mathbf{r}) \perp \boldsymbol{\sigma}$	$B(h)$ Γ_0	S/M
<u>эвезда</u>	(9)	$D_e(2) \pm 0, 10$	$D_{e(1)\pm 0, 10}$	$D_e(\Pi), \Pi C$	(6)
(1)	(2)	(3)	(4)	(3)	(0)
HD 33917	6589.4569	-1250 ± 710	$+650 \pm 250$	-800	210
	0040.3597	-2420 ± 1500	-70 ± 90	1000	200
	8116.1944	$+1270 \pm 1660$	-10 ± 120	+1200	90
	8125.3326	-1960 ± 2290	$+120 \pm 260$	+600	130
HD 34859 *	6640.4076	$+100 \pm 970$	$+410 \pm 80$		100
	7761.2291	-1860 ± 570	-190 ± 150	-3700	100
	8008.4756	$+1270 \pm 620$	$+280 \pm 130$	+100	150
	8125.3687	-320 ± 520	-290 ± 110	-1000	150
HD 35008 *	6319.4555	-1470 ± 2250	-20 ± 120		150
	6995.5791	$+2080\pm1040$	$+80\pm200$	+1200	170
	8116.2784	-740 ± 280	-380 ± 200		220
HD 35039	7761.1972	$+50\pm50$	-80 ± 50	-500	320
	8068.4833	-0 ± 30	$+50\pm40$	+200	500
	8116.22916	-130 ± 50	-80 ± 50		500
HD 35177 *	6590.4375	-1590 ± 1290	-380 ± 410	-4100	330
	6640.2881	-730 ± 250	-150 ± 100		180
	7740.2944	-1910 ± 2600	$+1790\pm290$	-400	190
	7762.4305	-1700 ± 1900	-710 ± 190	+1400	320
	8068.5006	$+730\pm1230$	$+740\pm280$	+500	200
HD 35575	5553.3042	-200 ± 400	$+310\pm270$	+110	350
	7830.2986	$+430\pm890$	-10 ± 120	+1500	90
	8008.5854	$+280\pm580$	-230 ± 150	-400	280
	8068.5194	-120 ± 230	-210 ± 210	250	290
HD 35730	5553.2381	$+150\pm320$	-30 ± 220	-300	400
	5841.5813	-450 ± 300			360
	5842.5943	-410 ± 200	-30 ± 90	+150	470
	5962.2812	-360 ± 280			410
	7740.3020	$+410\pm260$	$+150\pm130$	+100	370
HD 36549	6224.5565	$+150\pm260$	-120 ± 70		100
	6639.5298	-700 ± 480	-20 ± 140		130
	6639.5520	-290 ± 440	-160 ± 110		120
	6644.4604	-180 ± 190	$+60\pm60$		100
	7740.3333	-390 ± 360	-150 ± 130	+200	210

Результаты измерений магнитных полей химически пекулярных звезд подгруппы (a) ассоциации Орион OB1

Звезда	JD (2450000+)	$B_e(z) \pm \sigma$, Гс	$B_e(\mathbf{r}) \pm \sigma$, Гс	$B_e(h)$, Гс	S/N
(1)	(2)	(3)	(4)	(5)	(6)
	7763.1979	-250 ± 360	-290 ± 100		130
	7763.2201	-510 ± 490	$+190\pm90$		100
	8068.5388	-170 ± 410	-140 ± 140	-250	180
HD 38912	7823.2111	-260 ± 1100	$+140\pm140$	+600	140
	8116.3097	$+830\pm1690$	-150 ± 110	+300	140
	8117.2430	$+1060\pm880$	-200 ± 220	-1000	100
HD 294046 *	8067.4027	-1420 ± 1800	-90 ± 130	-1600	80
	8068.4666	-1750 ± 680	-890 ± 130	-2300	230
	8116.2500	-1500 ± 970	$+270\pm220$	-1100	130
	8117.2729	$+3350\pm1120$	$+330\pm160$	+1100	200

(Продолжение)

Таким образом, магнитное поле обнаружено у четырех звезд из 10, у остальных продольное поле B_e оказалось ниже предела обнаружения нашей аппаратурой.

Далее мы даем краткие комментарии к наблюдениям магнитного поля каждой из исследованных 10 звезд. Более подробные сведения об их физических параметрах по состоянию на 2013 год приведены в работе [1].

Для того, чтобы сравнивать измерения разной точности и определить, является ли звезда магнитной, введем параметры: $\langle B_e \rangle$ — среднеквадратическое магнитное поле, σ — среднеквадратическую ошибку определения $\langle B_e \rangle$ и величину χ^2/n — параметр, который определяет достоверность отклонений результата от нуля. Используем для определения указанных величин формулы, приведенные в работе [9]. При нашем количестве измерений будем считать, что у звезды более-менее надежно измеряется магнитное поле, если величина $\chi^2/n > 5.0$. Здесь и далее n — количество измерений для каждой звезды.

При малом количестве наблюдений, случайно разбросанных по фазе периода звезды, это наилучший параметр для характеристики ее магнитного поля.

3. КОММЕНТАРИИ К ИССЛЕДОВАННЫМ ЗВЕЗДАМ

HD 33917

Звезда спектрального класса A0, тип пекулярности Si. На полученных нами спектрах есть всего несколько очень широких линий: сильные линии $\lambda = 4481$ Å (MgII), $\lambda = 4549$ Å, $\lambda = 4572$ Å. Линии гелия $\lambda = 4471$ Å и $\lambda = 4713$ Å — не видны. В линии водорода $\lambda = 4861$ Å имеются признаки наличия второго компонента.

Измерения поля классическим методом [8] практически невозможны из-за малого количества линий и их сложного, уширенного вращением профиля. Это видно по данным таблицы. Проекция скорости вращения на луч зрения $v_e \sin i = 140$ км с⁻¹.

Среднеквадратическое поле $\langle B_e \rangle$, вычисленное по измерениям, выполненным классическим методом: $\langle B_e \rangle = 1794.0 \pm 1639.6, \chi^2/n = 1.8.$

Ошибки измерений неприемлемо велики, поэтому будем основываться на результатах, полученных методом регрессии: $\langle B_e \rangle = 332.4 \pm 195.3$, $\chi^2/n = 1.9$.

Магнитное поле по нашим измерениям не обнаруживается.

Признаков систематического проявления эффекта Зеемана в спектрах не заметно. Видны мелкие структуры на профиле линии $H\beta$, возможно, магнитные. Тем не менее, убедительных доказательств существования магнитного поля у звезды мы не нашли.

HD 34859

Звезда спектрального класса A0 с усиленными линиями кремния. Наличие поля можно заподозрить по всем измерениям. В некоторых линиях видны проявления V-параметра Стокса.

Звезда — довольно быстрый ротатор, линии широкие, поэтому точность измерений —

Рис. 1. Кривая блеска HD 34859: JD(max) = 2448697.9315 + 1.0462002 × E.

низкая: $v_e \sin i = 90$ км с⁻¹. Наши 4 измерения дают возможность определить среднеквадратическое поле: $\langle B_e \rangle = 1138.5 \pm 692.9, \ \chi^2/n = 3.8$ (z); $\langle B_e \rangle = 302.8 \pm 120.3, \ \chi^2/n = 9.9$ (г).

Таким образом, наши измерения, полученные методом регрессии, указывают на то, что звезда магнитная.

Согласно работе [10], период вращения звезды P = 1.4046. Для его уточнения мы использовали доступные из литературы фотометрические данные со спутника HIPPARCOS. Построив периодограммы, мы выявили два возможных периода: P = 1.40462002 (рис. 1), P = 2.40924179 (рис. 2). Период, совпадающий с предложенным в работе [10], является более вероятным, второй — примерно в 2 раза больше и может быть ложным. Полученные нами 4 точки магнитных измерений не дают возможности выбрать между ними, так как достаточно хорошо соответствуют обоим периодам (рис. 3–4). Для получения более точной оценки необходимо провести дополнительные наблюдения данной звезды.

HD 35008

Звезда с усиленными линиями кремния. В спектре наблюдаются три широкие линии, проекция скорости вращения которых $v_e \sin i = 210$ км с⁻¹. Два наших измерения по металлам наличия поля не показали, но согласно третьему, присутствует слабое поле: $\langle B_e \rangle = 1531.2 \pm 1440.8$, $\chi^2/n = 3.8$ (z); $\langle B_e \rangle = 224.5 \pm 177.4$, $\chi^2/n = 1.3$ (г).

Наше третье измерение совпадает с оценкой продольного магнитного поля $B_e = -339 \pm 69$ Гс, которую сделали в работе [11] по спектральным данным с отношением S/N = 2200, полученным 29

Рис. 2. Кривая блеска HD 34859: JD(max) = 2448697.9315 + 2.0924179 × E.

Рис. 3. Кривая переменности продольного магнитного поля HD 34859 при JD(max) = 2448697.9315 + 1.0462002 × Е, по результатам, полученным методом измерений сдвигов центров тяжести линий (а) [7], регрессии (b) [8].

января (UT = 00:22) 2005 года на спектрополяриметре FORS1. Так как измерения в работе [11] выполнены методом регрессии, то с учетом ее результатов, используя все наши измерения из таблицы, получаем: $\langle B_e \rangle = 258.2 \pm 155.4, \chi^2/n = 7.0.$

Хотя наличие сильного поля у звезды не отмечено, профили поляризации водородной линии $H\beta$ имеют сложную форму, можно заподозрить наличие зеемановских особенностей. Будем считать звезду магнитной. Сведений о периоде вращения в литературе нет.

Рис. 4. То же, что на рис. 3, при JD(max) = 2448697.9315 + 2.0924179 × Е.

HD 35039

Спектрально-двойная о Огі. Звезда с усиленными линиями гелия. Линии в спектре очень узкие: $v_e \sin i < 20$ км с⁻¹. Поле не найдено по 59 линиям, что много для звезды класса B2, He-rich. Абт [12] считает, что эти линии принадлежат главному компоненту, а вторичного не видно.

Найдем среднеквадратическое поле и по зеемановскому расщеплению и по регрессии, так как линии узкие: $\langle B_e \rangle = 74.0 \pm 45.9, \ \chi^2/n = 2.2$ (z); $\langle B_e \rangle = 75.2 \pm 49.3, \ \chi^2/n = 2.3$ (г).

Измерения обоими методами дают одинаковые результаты. Магнитное поле у звезды не найдено.

HD 35177

Пекулярная звезда с аномалиями кремния. Быстрый ротатор $v_e \sin i = 200 \text{ км c}^{-1}$, период вращения P = 0.4528 [10]. Зеемановских особенностей, указывающих на сильное поле, в линиях металлов не видно. Однако в водородной линии Н β такие признаки имеются. Это позволяет предположить, что звезда является магнитной. Среднеквадратическая величина $\langle B_e \rangle$, полученная двумя методами, составляет: $\langle B_e \rangle = 1423.5 \pm 1558.8, \ \chi^2/n = 4.3$ (z); $\langle B_e \rangle = 940.5 \pm 274.5, \ \chi^2/n = 12.4$ (г).

Эти данные указывают на то, что звезда имеет магнитное поле, продольный компонент которого достигает величины 1 кГс.

На рис. 5 и 6 приведены наши измерения магнитного поля с периодом 0.⁴5496 и кривая блеска по

Рис. 5. Кривая изменения продольного магнитного поля B_e звезды HD 35177 при JD(max) = 2448098.49253 + 0.5496000 × Е по измерениям поля, выполненным (а) методом измерений сдвигов центров тяжести [7], (b) по водороду, (c) методом регрессии [8].

результатам фотометрии со спутника HIPPARCOS с этим же периодом. Видим, что измерения по водороду и классическим методом подтверждают наличие поля, хорошо прослеживается периодическая составляющая, рассеяние данных измерений небольшое. Однако метод регрессии дает большой разброс.

HD 35575

Звезда спектрального класса ВЗ с ослабленными линиями гелия. Быстрый ротатор — $v_e \sin i = 150 \text{ км c}^{-1}$. Сведений о периоде вращения нет.

Мы получили четыре спектра в течение нескольких лет, признаков поля на них не видно. Ни в одном из измерений поле не превысило 400 Гс. Среднеквадратические величины следующие:

$$\langle B_e \rangle = 281.8 \pm 579.1, \, \chi^2/n = 0.2 \, (z)$$

 $\langle B_e \rangle = 219.8 \pm 196.2, \, \chi^2/n = 1.2 \, (r).$

 $JD(max) = 2448098.49253 + 0.5496000 \times E.$

Имеются все основания считать звезду немагнитной.

HD 35730

Звезда спектрального класса A4 с ослабленными линиями гелия. Линии в спектре уширены вращением, $v_e \sin i = 80 \, \mathrm{km} \, \mathrm{c}^{-1}$. Сведений о периоде вращения нет.

Мы получили пять дат наблюдений. Магнитное поле у звезды не обнаружено.

Результаты измерений поля, проведенных разными методами, следующие: $\langle B_e \rangle = 371.7 \pm 275.1$, $\chi^2/n = 2.2$ (z); $\langle B_e \rangle = 90.0 \pm 156.4$, $\chi^2/n = 0.5$ (г). Звезда немагнитная.

HD 36549

Звезда спектрального класса В7 с ослабленными линиями гелия. Линии в спектре достаточно сильно уширены вращением: $v_e \sin i = 75 \text{ км c}^{-1}$. Сведений о периоде вращения нет. Мы получили восемь моментов наблюдений звезды в период с 2012 по 2017 гг. Магнитное поле не обнаружено: $\langle B_e \rangle = 376.3 \pm 386.5, \ \chi^2/n = 0.8 (z);$ $\langle B_e \rangle = 160.6 \pm 108.9, \ \chi^2/n = 2.7 (r).$

Признаков зеемановских структур не обнаружено. Таким образом, считаем звезду немагнитной.

HD 38912

Звезда с усиленными линиями кремния спектрального класса В8. Получены три спектра. Линии очень широкие и мелкие: $v_e \sin i = 100 \text{ км c}^{-1}$. Период вращения P = 1.4628 суток.

Результирующее среднеквадратичное поле, определенное двумя методами, следующее: $\langle B_e \rangle = 791.6 \pm 1270.2, \, \chi^2/n = 0.6$ (z); $\langle B_e \rangle = 165.4 \pm 163.4, \, \chi^2/n = 1.2$ (г).

Магнитное поле не обнаружено.

Рис. 7. Кривая блеска HD 294046: JD(max) = 2448741.8328 + 0.8985767 × E.

Рис. 8. Изменения продольной компоненты магнитного поля HD 294046 с $JD(max) = 2448741.8328 + 0.8985767 \times E$ по измерениям различными методами: (а) сдвига центров тяжести, (b) по линии водорода $H\beta$, (c) методом регрессии.

HD 294046

Звезда спектрального класса В9 с усиленными линиями кремния. Получены четыре спектра. Исходя из результатов измерений поля, можно утверждать, что найдена новая магнитная звезда: $\langle B_e \rangle = 2153.6 \pm 1214.3, \quad \chi^2/n = 4.6$ (z); $\langle B_e \rangle = 495.5 \pm 164.2, \quad \chi^2/n = 13.3$ (г).

Для определения периода вращения звезды мы использовали фотометрические данные со спутника HIPPARCOS. Оценка периода вращения дает величину $P = 0^{d}$ 8985767 (рис. 7). Магнитные измерения также хорошо сворачиваются с этим периодом (рис. 8). Величины продольной компоненты поля, полученные по измерениям центров тяжести линий металлов (а) и водорода (b), показывают примерно в два раза большую амплитуду переменности поля по сравнению с оценкой методом регрессии (с).

4. ЗАКЛЮЧЕНИЕ

Проведены наблюдения продольных магнитных полей для 10 звезд подгруппы (а) ассоциации Орион OB1. Для каждого объекта было выполнено не менее трех измерений. Магнитное поле обнаружено у четырех из исследованных звезд: у трех надежно, еще у одной вероятно. Для остальных шести поле оказалось меньше предела обнаружения нашей методики.

Таким образом, закончены измерения магнитных полей всех известных к настоящему времени химически пекулярных звезд подгруппы (а) ассоциации Орион ОВ1. Пять звезд из этой подгруппы изучались нами ранее, или сведения были взяты из литературы. Все они, с той или иной степенью надежности, обладают магнитными полями.

В целом, из 15 Ар- и Вр-звезд подгруппы, магнитное поле уверенно наблюдается у пяти объектов, возможно магнитными являются еще два. У остальных восьми звезд поле не обнаружено. Сравнительный анализ магнитных полей и физических параметров звезд подгруппы (а) ассоциации Орион OB1 будет проведен в следующей статье.

БЛАГОДАРНОСТИ

Авторы благодарят Г. А. Чунтонова за создание высокоэффективного анализатора круговой поляризации для ОЗСП БТА. Авторы благодарят Российский научный фонд за финансовую поддержку настоящей работы (грант РНФ 14-50-00043). СПИСОК ЛИТЕРАТУРЫ

- I. I. Romanyuk, E. A. Semenko, I. A. Yakunin, and D. O. Kudryavtsev, Astrophysical Bulletin 68, 300 (2013).
- E. A. Semenko, I. I. Romanyuk, D. O. Kudryavtsev, and I. A. Yakunin, Astrophysical Bulletin 69, 191 (2014).
- 3. I. I. Romanyuk, E. A. Semenko, I. A. Yakunin, et al., Astrophysical Bulletin **71**, 436 (2016).
- 4. I. I. Romanyuk, E. A. Semenko, I. A. Yakunin, et al., Astrophysical Bulletin **72**, 165 (2017).
- 5. V. E. Panchuk, G. A. Chuntonov, and I. D. Naidenov, Astrophysical Bulletin **69**, 339 (2014).
- G. A. Chountonov, in *Magnetic Stars*, Ed. by Y. V. Glagolevskij, I. I. Kudryavtsev, and I. I. Romanyuk (Nizhnij Arkhyz, 2004), pp. 286–291.
- 7. D. O. Kudryavtsev, Baltic Astronomy 9, 649 (2000).
- 8. S. Bagnulo, T. Szeifert, G. A. Wade, et al., Astron. and Astrophys. **389**, 191 (2002).
- 9. I. B. Thompson, D. N. Brown, and J. D. Landstreet, Astrophys. J. Suppl. **64**, 219 (1987).
- M. Netopil, E. Paunzen, S. Hümmerich, and K. Bernhard, Monthly Notices Royal Astron. Soc. 468, 2745 (2017).
- 11. S. Bagnulo, J. D. Landstreet, E. Mason, et al., Astron. and Astrophys. **450**, 777 (2006).
- 12. H. A. Abt, Astrophys. J. 629, 507 (2005).

Magnetic Fields of CP Stars in the Orion OB1 Association. III. Stars of Subgroup (a)

I. I. Romanyuk, E. A. Semenko, A. V. Moiseeva, I. A. Yakunin, and D. O. Kudryavtsev

The paper presents results of magnetic field measurements of 10 chemically peculiar stars of subgroup (a) in the Orion OB1 association: HD 33917, HD 34859, HD 35008, HD 35039, HD 35177, HD 35575, HD 35730, HD 36549, HD 38912, and HD 294046. Observations were carried out with the circular polarization analyzer at the Main Stellar Spectrograph at the 6-m SAO RAS telescope. Magnetic fields were detected in four stars, six stars have magnetic fields below the detection threshold.

Keywords: *stars: magnetic field—stars: chemically peculiar*