УДК 524.3-333/355; 524.5

# МЕЖЗВЁЗДНАЯ И ОКОЛОЗВЁЗДНАЯ СРЕДА В НАПРАВЛЕНИИ ИК-ИСТОЧНИКА IRAS 01005+7910

## © 2016 Е. Г. Сендзикас<sup>\*</sup>

Специальная астрофизическая обсерватория РАН, Нижний Архыз, 369167 Россия Поступила в редакцию 27 июля 2015 года; принята в печать 29 декабря 2015 года

С помощью спектров с высоким спектральным разрешением, полученных на 6-метровом телескопе САО РАН в 2002—2013 гг., изучены спектральные особенности линий межзвёздной среды. Проанализированы лучевые скорости абсорбций линий Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å и Ca II 3968 Å. В оптическом спектре IRAS 01005+7910 отождествлены 7 диффузных межзвёздных полос 4964, 5780, 5797, 6196, 6203, 6379 Å. Измерены лучевые скорости  $V_r$  и эквивалентные ширины  $W_{\lambda}$ , для которых вычислены значения межзвёздного покраснения  $E_{B-V}$  и столбцовой плотности нейтрального водорода lg [N(H)].

Ключевые слова: линии: профили — звёзды: массивные

#### 1. ВВЕДЕНИЕ

Структура межзвёздной среды крайне неоднородна и сложна: гигантские молекулярные облака, отражательные туманности, протопланетные туманности, планетарные туманности, глобулы и т.д. Это приводит к широкому спектру происходящих в ней процессов и наблюдательных проявлений. Целью исследования IRAS 01005+7910 (далее в тексте IRAS 01005) было изучение межзвёздной и околозвёздной среды в направлении этого объекта. ИК-источник IRAS 01005 с галактическими координатами  $l = 123^{\circ}.57, b = 16^{\circ}.59$  в оптическом диапазоне отождествлён с пекулярным В-сверхгигантом,  $B = 11^{\text{m}}5$ ,  $V = 11^{\text{m}}2$ . Клочкова и др. [1] обнаружили его спектральную переменность, определили температуру  $T_{\rm eff} = 21\,500$  K, ускорение силы тяжести  $\lg g = 3.0$ , металличность [Fe/H] = -0.31 и химический состав, а также выявили избыток углерода (C/O > 1) в атмосфере центральной звезды. В работе Клочковой и др. [2] изучена переменность оптического спектра IRAS 01005, определена системная скорость  $V_{\rm sys} = -50.5$  км с<sup>-1</sup>. Низкая металличность и большая галактическая широта указывают на то, что звезда IRAS 01005 относится к старому населению галактики. В данной работе представлены итоги многолетнего мониторинга этого объекта. В разделе 2 кратко описана методика наблюдений и обработки данных. В разделе 3 представлены основные результаты.

#### 2. НАБЛЮДЕНИЯ И ОБРАБОТКА

Работа основана на 21 спектре высокого разрешения,  $R = 60\,000$ , полученных с помощью эшелле спектрографа НЭС [3, 4] 6-м телескопа БТА в период 2002-2013 гг., в разных диапазонах длин волн. Экстракция одномерных спектров из двумерных эшелле-кадров выполнена с помощью модифицированного варианта [5] контекста ECHELLE комплекса программ MIDAS. Удаление следов космических частиц проводилось медианным усреднением двух спектров, полученных последовательно один за другим. Калибровка по длинам волн осуществлялась с использованием спектров Th-Ar-лампы с полым катодом. Одномерные спектры обрабатывались программой DECH20 [6]. Контроль инструментального согласования спектров звезды и лампы с полым катодом выполнен по теллурическим линиям [O I], O<sub>2</sub> и Н<sub>2</sub>О. Даты проведения наблюдений, зарегистрированный спектральный диапазон и максимальные значения отношения сигнала к шуму S/N приведены в таблице 1. Более детально процедура измерения лучевой скорости V<sub>r</sub> по спектрам, полученным со спектрографом НЭС, и источники ошибок описаны в статье [7]. Среднеквадратичная погрешность измерений Vr для звезд с узкими абсорбциями в спектре < 1.0 км с<sup>-1</sup> (точность по одной линии [7]).

#### 3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Рассмотрим изменения положения компонентов профилей спектральной линии Na I 5890 Å. Для



Рис. 1. Профили линий Na I 5890 Å (а) и Na I 5896 Å (b) для 20 спектров, наложенные друг на друга.

Таблица 1. Даты получения спектров, диапазон и отношение сигнала к шуму

| Дата     | $\Delta\lambda,$ нм | S/N | Дата     | $\Delta\lambda,$ нм | S/N |
|----------|---------------------|-----|----------|---------------------|-----|
| 04.02.02 | 460-607             | 60  | 09.03.04 | 528-676             | 55  |
| 22.11.02 | 538-685             | 50  | 28.08.04 | 528-676             | 55  |
| 25.11.02 | 538-685             | 30  | 18.01.05 | 528 - 676           | 110 |
| 27.11.02 | 452-600             | 35  | 13.11.05 | 456-601             | 110 |
| 02.12.02 | 452-600             | 45  | 15.11.05 | 528-678             | 120 |
| 03.12.02 | 452-600             | 30  | 09.12.06 | 447-594             | 130 |
| 19.12.02 | 452-600             | 50  | 03.11.08 | 446-593             | 160 |
| 23.02.03 | 516-666             | 55  | 05.11.08 | 446-593             | 160 |
| 13.04.03 | 528-676             | 80  | 29.05.13 | 391-680             | 70  |
| 15.11.03 | 352-500             | 100 | 21.08.13 | 391-680             | 80  |
| 10.01.04 | 528-676             | 50  |          |                     |     |

наглядности все спектры приведены на одном рисунке (рис. 1). Все компоненты линии, от спектра к спектру, хорошо согласуются по лучевым скоростям, но различаются по остаточной интенсивности, также в некоторых спектрах присутствует ионосферный эмиссионный компонент. Лучевая скорость эмиссии совпадает со скоростями атмосферных линий [O I], O<sub>2</sub> и H<sub>2</sub>O (равны нулю), а следовательно, имеет земное происхождение.

Исследование лучевых скоростей абсорбционных пиков линий Na I 5890 Å, Na I 5896 Å (таблица 2), Ca II 3934 Å и Ca II 3968 Å (таблица 3) начнём с самого коротковолнового пика,  $V_r = -72.4 \text{ км c}^{-1}$ . Этот компонент формируется в расширяющейся околозвёздной оболочке IRAS 01005. Системная скорость этого объекта  $V_{\text{sys}} = -50.5 \text{ км c}^{-1}$  [2], получаем типичную для протопланетарной туманности скорость расширения оболочки  $V_{\rm exp} \approx 22$  км с<sup>-1</sup> [8, 9].

Eшë олин коротковолновый компонент  $(V_{\rm r} = -65.7 \, {\rm km} \, {\rm c}^{-1})$  D-линии Na I формируется в рукаве Персея. Это предположение основано на том, что в спектрах В-звезд с близкими галактическими координатами HD 4841, HD 4694 и Hiltner 62 [10], которые являются членами ассоциации Cas OB7, обнаружен аналогичный межзвёздный компонент с  $V_{\rm r} = -65$  км с<sup>-1</sup>. Расстояние до ассоциации Cas OB7 d = 2.5 кпк [11], оно является нижней оценкой расстояния до IRAS 01005. Самый слабый компонент ( $V_{\rm r} = -52.7 \, {\rm km} \, {\rm c}^{-1}$ ) принадлежит атмосфере звезды, поскольку его положение согласуется с положением множества атмосферных абсорбций металлов [2]. Два длинноволновых компонента ( $V_{\rm r}=-27.6~{\rm кm}~{\rm c}^{-1}$  и  $-10.6~{\rm кm}~{\rm c}^{-1}$ ) формируются в межзвёздной среде в Местном рукаве Галактики.

Детальный анализ линии Na I 5890 Å позволил выделить в 12 из 20 спектров свечение ионосферы Земли. На рис. 2 изображены 3 характерных спектра с выраженным эмиссионным компонентом ионосферы. Процедура заключалась в делении каждого спектра на так называемый «средний спектр», который состоит из «склеенных кусочков» разных спектров для каждого компонента. Выбирались фрагменты с наибольшей остаточной интенсивностью, то есть был построен огибающий спектр. Подобный метод создания среднего спектра применён из-за того, что усреднение по нескольким спектрам спектрально-переменной звезды может привести к частичной потере информации. Для подтверждения того, что эмиссии имеют ионосферное происхождение, было проведено дополнительное исследование. Один из спектров, содержащий эмиссионную линию, был обработан особым образом. Вместо усреднения по 5 кадрам каждый кадр обрабатывался отдельно. Пять спектров, полученных один за другим, длина экспози-

| Π                          |
|----------------------------|
| Na                         |
| линий                      |
| спектральных               |
| и остаточные интенсивности |
| $\widehat{}$               |
| Ξ.                         |
| (KM C                      |
| . Лучевые скорости         |
| 2                          |
| Таблица                    |

|          |      | r     | 6.1      | 1.8      | 5.8      | 7.6      | 9        | 5.4      | 6.1      | 5.8      | 7.3      | 21.2     | 7.9         | 1.2      | 6.2      | 5.9      | 5.7      | 5.1      | 5.3      | 4.6      | 4.6      | 4.9      | 6.2          |
|----------|------|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|
|          | 5    | $V_r$ | -10.4    | -9.8     | -10.5    | -9.1     | -10.5    | -10.5    | -10.9    | -9.8     | -10.3    | -10.4    | -9.1        | -10.4    | -10.4    | -10.4    | -10.1    | -11.0    | -9.8     | -10.5    | -9.8     | -9.9     | -10.1        |
|          |      | r     | 56.1     | 52.5     | 51.8     | 59.9     | 57.7     | 57.0     | 54.3     | 55.5     | 54.5     | 55.3     | 51.8        | 51.1     | 52.2     | 53.1     | 53.0     | 54.3     | 56.4     | 55.7     | 52.9     | 53.3     | 54.4         |
|          | 4    | $V_r$ | -28.8    | -27.2    | -28.8    | -24.9    | -27.8    | -27.8    | -27.5    | -27.2    | -27.9    | -28.0    | -27.6       | -27.9    | -28.2    | -27.7    | -28.0    | -28.0    | -27.4    | -27.5    | -27.8    | -27.7    | -27.7        |
| 96Å      |      | r     | 72.5     | 72.3     | 77.3     | 73.6     | 72.9     | 73.7     | 74.5     | 71.0     | 73.8     | 73.5     | <b>39.8</b> | 72.2     | 73.6     | 74.5     | 74.9     | 73.2     | 75.0     | 76.5     | 72.5     | 76.3     | 73.7         |
| Na I 589 | 3    | $V_r$ | -53.1    | -51.4    | -51.1    | -50.7    | -52.8    | -52.4    | -52.8    | -53.0    | -52.7    | -52.7    | -52.4       | -52.3    | -52.1    | -51.8    | -51.5    | -52.5    | -52.2    | -52.0    | -51.5    | -52.9    | -52.2        |
|          |      | r     | 56.5     | 54.2     | 54.4     | 57.2     | 58.0     |          | 56.8     | 55.3     |          | 57.0     | 53.0        | 52.2     | 55.8     | 57.4     | 56.1     | 55.8     | 55.8     | 56.5     | 55.6     | 54.7     | 55.7         |
|          | 2    | $V_r$ | -64.9    | -65.6    | -67.1    | -63.4    | -64.9    |          | -65.6    | -64.8    |          | -64.8    | -65.1       | -66.2    | -64.9    | -65.0    | -64.7    | -65.5    | -65.6    | -66.2    | -65.4    | -65.2    | -65.3        |
|          |      | r     | 44.7     | 39.1     | 44.7     | 42.6     | 47.1     | 49.3     | 43.7     | 42.7     | 44.6     | 46.7     | 43.7        | 45.3     | 46.5     | 49.2     | 48.4     | 48.8     | 50.2     | 51.3     | 48.4     | 46.7     | 46.2         |
|          | 1    | $V_r$ | -72.7    | -72.2    | -73.7    | -71.0    | -72.8    | -73.2    | -73.0    | -72.7    | -72.6    | -72.7    | -72.6       | -73.3    | -73.1    | -73.1    | -73.1    | -73.5    | -72.4    | -72.8    | -73.3    | -73.1    | -72.8        |
|          |      | r     | 7.8      | 3.4      | 1.6      | 6.8      | 6.6      | 7.4      | 5.7      | 4.7      | 10.9     |          | 8.1         | 3.1      | 8.3      | 5.8      | 5.8      | 5.1      | 4.3      | 4.4      | 4.2      | 4.1      | 5.7          |
|          | 5    | $V_r$ | -11.0    | -10.1    | -11.0    | -9.7     | -10.7    | -11.4    | -11.6    | -9.0     | -10.7    | -11.7    | -8.7        | -10.7    | -10.6    | -10.5    | -10.4    | -11.7    | -10.3    | -10.9    | -10.4    | -10.1    | -10.6        |
|          |      | r     | 41.0     | 37.1     | 34.1     | 40.9     | 39.7     | 39.0     | 41.4     | 35.0     | 42.5     | 39.9     | 37.8        | 40.6     | 35.3     | 39.8     | 37.9     | 38.8     | 42.3     | 43.5     | 37.0     | 38.7     | 39.1         |
|          | 4    | $V_r$ | -28.2    | -27.2    | -28.5    | -25.8    | -27.9    | -27.0    | -27.9    | -27.5    | -27.7    | -27.7    | -27.7       | -27.9    | -27.9    | -27.5    | -27.5    | -28.0    | -27.0    | -27.1    | -27.7    | -27.5    | -27.6        |
| 90 Å     |      | r     | 58.1     | 61.3     | 67.3     | 67.8     | 66.3     | 65.6     | 59.5     | 63.3     | 64.8     | 60.5     | 66.3        | 59.1     | 61.9     | 59.8     | 57.7     | 62.1     | 67,0     | 65.8     | 60.6     | 65.1     | 63.0         |
| Na I 589 | 3    | $V_r$ | -54.4    | -51.8    | -51.8    | -51.2    | -52.9    | -53.8    | -52.3    | -52.6    | -52.8    | -52.6    | -52.3       | -52.1    | -52.4    | -52.4    | -52.5    | -54.0    | -52.9    | -53.7    | -52.4    | -52.3    | -52.7        |
|          |      | r     | 37.5     | 35.6     | 35.6     | 37.9     |          | 48.1     | 38.5     | 37.3     | 38.6     | 36.6     | 39.3        | 38.7     | 38.0     | 39.6     | 37.7     | 36.6     | 41.4     | 39.8     | 35.5     | 42.1     | 38.7         |
|          | 2    | $V_r$ | -65.3    | -64.6    | -65.5    | -65.9    |          | -63.8    | -65.7    | -66.1    | -66.9    | -66.0    | -65.6       | -65.5    | -65.2    | -65.4    | -65.1    | -66.8    | -66.4    | -66.5    | -65.9    | -65.5    | -65.7        |
|          |      | r     | 28.5     | 28.1     | 28.1     | 29.7     | 31.9     | 33.7     | 25       | 27       | 27.7     | 28.1     | 30          | 30.3     | 30.4     | 33.3     | 32.9     | 32.8     | 34.5     | 35.1     | 31.8     | 35.9     | 30.7         |
|          | 1    | $V_r$ | -72.9    | -72.5    | -72.8    | -70.7    | -72.8    | -71.9    | -72.7    | -72.4    | -72.4    | -72.5    | -72.6       | -72.4    | -72.8    | -72.3    | -72.5    | -73.0    | -71.7    | -72.2    | -72.3    | -72.5    | -72.4        |
|          | Дата |       | 04.02.02 | 22.11.02 | 25.11.02 | 27.11.02 | 02.12.02 | 03.12.02 | 19.12.02 | 23.02.03 | 13.04.03 | 10.01.04 | 09.03.04    | 28.08.04 | 18.01.05 | 13.11.05 | 15.11.05 | 09.12.06 | 03.11.08 | 05.11.08 | 29.05.13 | 21.08.13 | Ср. значения |



**Рис. 2.** Рисунки (a), (b), (c) показывают эмиссионный компонент линии Na I 5890 Å как результат деления каждого спектра на средний (прерывистая линия), на картинке (d) нарисованы профили эмиссионного компонента Na I 5890 Å для 5 спектров, полученных 09.12.2006, наложенные друг на друга с обозначенными порядковыми номерами кадров. Вертикальная штриховая линия на всех рисунках соответствует лучевой скорости гелиоцентрической поправки.

|              | (     | Ca II 3 | 8934 Å |      | (     | Ca II 3 | 8968 Å |      |
|--------------|-------|---------|--------|------|-------|---------|--------|------|
| Дата         | 1     |         | 2      |      | 1     |         | 2      |      |
|              | $V_r$ | r       | $V_r$  | r    | $V_r$ | r       | $V_r$  | r    |
| 15.11.03     | -71.0 | 44.7    | -13.4  | 27.2 | -71.7 | 60.1    | -12.1  | 44.4 |
| 29.05.13     | -72.1 | 39.3    | -13.0  | 21.7 | -67.2 | 58.4    | -11.9  | 31.8 |
| 21.08.13     | -70.1 | 36.7    | -13.7  | 18.9 | -70.6 | 51.9    | -15.6  | 34.5 |
| Ср. значения | -71.1 | 40.2    | -13.4  | 22.6 | -69.8 | 56.8    | -13.2  | 36.9 |

**Таблица 3.** Лучевые скорости (км с<sup>-1</sup>) и остаточные интенсивности спектральных линий Са II

ции каждого кадра 60 минут, разделены на средний спектр (рис. 2d). На рисунке можно проследить последовательное увеличение остаточной интенсивности от спектра к спектру. Спектр номер 2 рис. 2d имеет немного завышенные значения остаточной интенсивности, подобные показатели обусловлены неоднородностью свечения ионосферы, но в целом тенденция изменения остаточной интенсивности со временем прослеживается. Изменение интенсивности эмиссии атомарного натрия 5890 Å в ночной период суток подробно описано авторами [12]. В спектрах IRAS 01005 отождествлены 7 межзвёздных полос DIBs (от англ. diffuse interstellar bands): 4964, 5780, 5797, 6196, 6203, 6379, 6614 Å (рис. 3), их длины волн взяты из работы [13]. Для отождествленных DIBs измерены лучевые скорости и эквивалентные ширины (таблица 4). В работе Фридмана и др. [14] исследована методика вычисления по эквивалентной ширине некоторых DIBs межзёздного покраснения  $E_{B-V}$  и столбцовой плотности нейтрального водорода lg [N(H)]. Используя результаты Фридмана, мы вычислили

83



Рис. 3. Профили DIBs в порядке возрастания длины волны 4964 Å (a), 5780 Å (b), 5797 Å (c), 6196 Å (d), 6203 Å (e), 6379 Å (f), 6614 Å (g).

-50 0 Radial velocity, km s<sup>-1</sup>

5780 Å

6196<sup>1</sup>Å

6379 Å

50

100

100

| Пата         | DIB   | 4964 | Å             | DIB   | 5780 | Å             | DIB   | 5797  | Å             | DIB   | 6196 | Å             | DIB   | 6203 | Å              | DIF   | 3 637 | Å             | DIB   | 6614 | Å             |
|--------------|-------|------|---------------|-------|------|---------------|-------|-------|---------------|-------|------|---------------|-------|------|----------------|-------|-------|---------------|-------|------|---------------|
| BIBL         | $V_r$ | r    | $W_{\lambda}$ | $V_r$ | r    | $W_{\lambda}$ | $V_r$ | r     | $W_{\lambda}$ | $V_r$ | r    | $W_{\lambda}$ | $V_r$ | r    | ${}^{\chi}\!M$ | $V_r$ | r     | $W_{\lambda}$ | $V_r$ | r    | $W_{\lambda}$ |
| 04.02.02     | -25.8 | 96.2 | 20            | -14.2 | 96.2 | 18            | -16.9 | 94.3  | 16            |       |      |               |       |      |                |       |       |               |       |      |               |
| 22.11.02     |       |      |               | -15.5 | 92.8 | 43            | -11.3 | 95.5  | 28            | -18.1 | 95.0 | 29            | -17.6 | 94.3 | 26             | -15.2 | 97.2  | 10            | -7.1  | 94.7 | 27            |
| 25.11.02     |       |      |               | -13.0 | 91.5 | 30            | -14.2 | 90.0€ | 53            | -11.1 | 91.6 | 32            |       |      |                |       |       |               | -11.0 | 93.5 | 19            |
| 27.11.02     |       |      |               | -4.8  | 85.4 | 39            | -10.3 | 38.1  | 33            |       |      |               |       |      |                |       |       |               |       |      |               |
| 02.12.02     |       |      |               | -13.2 | 89.2 | 54            | -16.1 | 93.9  | 24            |       |      |               |       |      |                |       |       |               |       |      |               |
| 03.12.02     |       |      |               | -8.7  | 96.6 | 30            | -12.8 | 93.2  | 38            |       |      |               |       |      |                |       |       |               |       |      |               |
| 19.12.02     | -22.6 | 95.1 | 18            | -5.0  | 88.3 | 32            | -20.2 | 95.2  | 17            |       |      |               |       |      |                |       |       |               |       |      |               |
| 23.02.03     |       |      |               | -15.2 | 94.9 | 17            | -13.4 | 95.4  | 18            | -14.5 | 95.9 | 10            | -18.4 | 95.5 | 17             | -19.1 | 94.5  | 20            | -18.5 | 92.8 | 47            |
| 13.04.03     |       |      |               | -17.9 | 93.3 | 25            | -11.9 | 94.3  | 23            | -5.4  | 97.2 | 12            | -6.6  | 98.5 | $\infty$       | -14.9 | 95.0  | 31            | -19.6 | 94.2 | 22            |
| 10.01.04     |       |      |               | -18.0 | 90.9 | 36            | -11.8 | 95.8  | 22            | -12.0 | 95.7 | 16            | -10.4 | 97.5 | 17             | -13.1 | 93.8  | 33            | -16.5 | 94.1 | 23            |
| 09.03.04     |       |      |               | -15.7 | 91.8 | 35            | -16.9 | 96.1  | 18            |       |      |               |       |      |                | -4.2  | 89.0  | 42            | -8.9  | 96.1 | 31            |
| 28.08.04     |       |      |               | -19.3 | 92.4 | 20            | -7.1  | 95.0  | 20            | -10.6 | 96.3 | 10            | -13.1 | 69.6 | 22             | -6.1  | 91.3  | 35            | -8.0  | 93.8 | 50            |
| 18.01.05     |       |      |               | -3.4  | 94.2 | 33            | -21.9 | 96.3  | 22            | -13.9 | 96.8 | 19            |       |      |                |       |       |               | -17.3 | 94.4 | 34            |
| 13.11.05     | -15.1 | 97.4 | 9             | -8.7  | 93.7 | 33            | -19.4 | 96.8  | 17            |       |      |               |       |      |                |       |       |               |       |      |               |
| 15.11.05     |       |      |               | -7.7  | 96.0 | 30            | -13.8 | 95.2  | 30            | -14.0 | 98.3 | 7             | -12.1 | 97.3 | 21             | -15.0 | 96.2  | 27            | -11.8 | 95.0 | 30            |
| 09.12.06     | -19.5 | 98.7 | 3             | -18.1 | 94.5 | 25            | -12.5 | 92.1  | 37            |       |      |               |       |      |                |       |       |               |       |      |               |
| 03.11.08     | -24.8 | 98.5 | 9             | -19.5 | 94.9 | 21            | -12.7 | 96.7  | 20            |       |      |               |       |      |                |       |       |               |       |      |               |
| 05.11.08     | -19.6 | 97.8 | 7             | -25.9 | 95.9 | 33            | -19.0 | 93.6  | 40            |       |      |               |       |      |                |       |       |               |       |      |               |
| 29.05.13     | -14.9 | 98.0 | 5             | -14.8 | 93.9 | 42            | -12.1 | 95.8  | 35            | -13.4 | 96.5 | 11            |       |      |                | -24.3 | 96.6  | 22            | -13.3 | 96.0 | 48            |
| 21.08.13     | -26.1 | 97.3 | 7             | -6.1  | 94.4 | 37            | -11.6 | 96.4  | 26            | -11.7 | 96.3 | 17            |       |      |                | -15.4 | 96.1  | 29            | -16.7 | 95.2 | 47            |
| Ср. значения | -21.1 | 97.4 | 9             | -13.2 | 93.0 | 30            | -14.3 | 94.5  | 27            | -12.5 | 96.0 | 16            | -13.0 | 92.1 | 19             | -14.1 | 94.4  | 28            | -13.5 | 94.5 | 34            |
| lg[N(H)]     |       |      |               | 2(    | ).39 |               | 20    | .81   |               | 21    | .04  |               |       |      |                |       |       |               | 2     | 0.92 |               |
| $E_{B-V}$    |       |      |               | 0.    | 051  |               | 0.    | 126   |               | 0.5   | 286  |               |       |      |                |       |       |               | 0     | 137  |               |

# МЕЖЗВЁЗДНАЯ И ОКОЛОЗВЁЗДНАЯ СРЕДА В НАПРАВЛЕНИИ ИК-ИСТОЧНИКА

85

межзвёздное покраснение и столбцовую плотность нейтрального водорода по четырём полосам DIBs (таблица 4).

#### 4. ВЫВОДЫ

На основе многолетних наблюдений на 6-м телескопе с высоким спектральным разрешением проведено исследование межзвёздной и околозвёздной среды в направлении ИК-источника IRAS 01005. Подробно рассмотрена структура и формирование D-линий Na I, включая теллурические эмиссии, а также линии межзвёздного Са II. Измерены лучевые скорости и остаточные интенсивности. Несмотря на то, что многолетние наблюдения проводились с помощью разных приёмников, результаты измерений лучевой скорости остаются практически одинаковыми и колеблются в пределах ошибок. Отождествлены 7 межзвёздных полос DIBs, измерены их лучевые скорости и эквивалентные ширины, 6 из 7 имеют примерно одинаковую лучевую скорость около  $-13 \,\mathrm{km}\,\mathrm{c}^{-1}$ . Определены соответствующие значения межзвёздного покраснения  $E_{B-V}$  и столбцовой плотности нейтрального водорода  $\lg[N(H)].$ 

#### БЛАГОДАРНОСТИ

Автор благодарен В. Г. Клочковой за предоставление наблюдательного материала. Работа выполнена при поддержке Российского Фонда Фундаментальных Исследований (проект 14-02-00291 а). Наблюдения на 6-метровом телескопе БТА и Цейсс-1000 проводятся при финансовой поддержке Министерства образования и науки Российской Федерации (соглашение № 14.619.21.0004, идентификатор проекта RFMEFI61914X0004). В работе использованы базы астрономических данных SIMBAD и SAO/NASA ADS.

#### СПИСОК ЛИТЕРАТУРЫ

- V. G. Klochkova, M. V. Yushkin, A. S. Miroshnichenko, et al., Astron. and Astrophys. 392, 143 (2002).
- 2. V. G. Klochkova, E. L. Chentsov, V. E. Panchuk, et al., Astrophysical Bulletin **69**, 439 (2014).
- V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and I. D. Najdenov, in *Proceedings of the Joint Discussion No.4 during the IAU General Assembly of 2006*. Eds. A. I. Gomez de Castro and M. A. Barstow (Editorial Complutense, Madrid, 2007), p.179.
- V. E. Panchuk, V. G. Klochkova, M. V. Yushkin, and I. D. Najdenov, Journal of Optical Technology 76, 42 (2009).
- 5. М. В. Юшкин, В. Г. Клочкова, Препринт № 206, (Специальная астрофизическая обсерватория, Нижний Архыз, 2005).
- 6. G. A. Galazutdinov, Preprint No. 92, (Special Astrophysical Observatory, Nizhnii Arkhyz, 1992).
- V. G. Klochkova, V. E. Panchuk, M. V. Yushkin, and D. S. Nasonov, Astrophysical Bulletin 63, 386 (2008).
- 8. V. G. Klochkova, Astrophysical Bulletin **69**, 279 (2014).
- 9. C. Loup, T. Forveille, A. Omont, and J. F. Paul, Astron. and Astrophys. Suppl. **99**, 291 (1993).
- A. S. Miroshnichenko, E. L. Chentsov, V. G. Klochkova, et al., Astrophys. J. 700, 209 (2009).
- 11. F. Cazzolato and S. Pineault, Astron. J. **125** 2050 (2003).
- 12. N. N. Shefov, A. I. Semenov, and V. Yu. Khomich, *Airglow as an Indicator of the Upper Atmospheric Structure and Dynamics* (GEOS, Moscow, 2006), p. 429.
- 13. M. A. Cordiner, S. J. Fossey, A. M. Smith, and P. J. Sarre, Astrophys. J. **764**, L10 (2013).
- 14. S. D. Friedman, D. G. York, B. J. McCall, et al., Astrophys. J. **727**, 33 (2011).

# Interstellar and Circumstellar Medium in the Direction to IR Source IRAS 01005+7910

### E. G. Sendzikas

Using the high-resolution spectra obtained at the 6-meter telescope of the SAO RAS over 2002–2013, we studied the spectral features of the lines of interstellar medium. The radial velocities of the Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å and Ca II 3968 Å absorption lines were analyzed. Seven diffuse interstellar bands 4964, 5780, 5797, 6196, 6203, 6379 Å were identified in the optical spectrum of IRAS 01005+7910. Radial velocities  $V_r$  and equivalent widths  $W_{\lambda}$  of these DIBs were measured, for which the values of the interstellar reddening  $E_{B-V}$  and column density of neutral hydrogen log [N(H)] were calculated.

Keywords: *line: profiles—stars: massive*