УДК 524.35-337

О ЗАВИСИМОСТИ ХИМИЧЕСКИХ АНОМАЛИЙ В СР-ЗВЕЗДАХ ОТ ВЕЛИЧИНЫ ИХ МАГНИТНОГО ПОЛЯ

© 2007 Ю. В. Глаголевский

Специальная астрофизическая обсерватория, Нижний Архыз, 369167 Россия Поступила в редакцию 29 ноября 2006; принята в печать 14 января 2007

Исследована зависимость величины аномальности параметра Z женевской фотометрии $Z0 = Z_{CP} - Z_{HOPM}$. от среднего поверхностного магнитного поля Bs. Величина Z0 пропорциональна степени аномальности химсостава. Оказалось, что величине $Bs \rightarrow 0$ величина $Z0 \rightarrow -0.010 \div -0.015$, т.е. часть CP-звезд практически не имеет магнитного поля, но имеет химические аномалии. Одна из возможных причин — эффект селекции, при котором к CP-звездам относят только те объекты, которые имеют сильные химические аномалии, вследствие чего образуется дефицит звезд с относительно слабыми аномалиями. Кроме того, у CP-звезд имеются другие, кроме магнитного поля, источники стабилизации атмосферы, например медленное вращение. Получены формулы связи Z0 с Bs.

1. ВВЕДЕНИЕ

Исследование зависимости величины и структуры аномалий химсостава в химически пекулярных (СР) звездах от величины магнитного поля все еще не потеряло своей актуальности. Особенно интересно то, что при одном и том же магнитном поле даже у звезд одного типа пекулярности наблюдается большой разброс по аномальности химсостава. В то же время существование связи между средней степенью пекулярности и магнитным полем несомненно [1]. Хорошо известно, что одни химические элементы концентрируются вокруг магнитных полюсов, другие - вдоль магнитного экватора. До сих пор не найдены звезды, которые обладали бы сильным магнитным полем и нормальным химсоставом. Звезды с нормальным химсоставом не имеют магнитного поля [2].

В данной работе рассматривается вопрос о связи химических аномалий с магнитным полем в области его слабых величин. Звезды, обладающие магнитным полем в диапазоне 0 - 500 Гс, совершенно не изучены вследствие недостаточной точности измерений поля. Кроме того, исследователей обычно интересовали объекты с самыми большими магнитными полями и с максимальными химическими аномалиями. В работе [3] мы пытались провести предварительное исследование СРзвезд со слабыми эффективными магнитными полями, преимущественно с Ве < 100 Гс. Оказалось, что несмотря на слабость магнитного поля параметры, характеризующие степень аномальности химсостава, такие же, как у звезд с относительно сильными магнитными полями.

В последнее время мы предприняли дополнительные исследования химсостава отдельных звезд с эффективным магнитным полем Be < 100 Гс методом синтетических спектров [4–6]. В результате выяснилось, что несмотря на слабость магнитного поля изученные объекты имеют аномалии, обычные для магнитных звезд такого же типа. В этих работах был сделан также предварительный вывод, что либо при слабых магнитных полях нарушается связь между величинами химических аномалий и магнитного поля, либо из-за наблюдательной селекции имеется существенный недостаток CP-звезд со слабыми, ниже порога обнаружения, химическим аномалиями.

При спектральной классификации к СРзвездам относят только те звезды, которые обладают относительно сильными спектральными аномалиями. Поэтому при данном магнитном поле таких звезд наблюдается больше. Вследствие этого зависимость степени химических аномалий от величины магнитного поля искажается, причем наиболее сильно это проявляется в диапазоне слабых магнитных полей.

При одной и той же величине магнитного поля наблюдается разная степень химических аномалий как слабая, так и сильная. Как известно, разброс значений химсостава зависит от ориентации звезды относительно наблюдателя, от силы ветра на звезде, от величины микротурбуленции и от содержания каждого элемента, которое различно у разных звезд. Ориентация влияет потому, что химические элементы распределены по поверхности неравномерно. Кроме того, химсостав меняется по мере эволюционного продвижения звезды поперек полосы Главной последовательности [7]. Измеряемое значение поля может быть близким к нулю в том случае если мы смотрим на звезду со стороны магнитного экватора. Но таких случаев мало, а звезд со слабым полем и сильными химическими аномалиями много.

2. ЗАВИСИМОСТЬ СТЕПЕНИ АНОМАЛЬНОСТИИ ХИМСОСТАВА ОТ ВЕЛИЧИНЫ МАГНИТНОГО ПОЛЯ

В данной работе мы снова предприняли попытку изучить поведение химсостава у звезд с самыми слабыми и самыми сильными магнитными полями. Лучше всего для поставленной задачи было бы использовать средние величины поверхностного магнитного поля Bs. Однако таких данных в настоящее время пока еще слишком мало, а нижняя граница определения поля слишком большая, т.е. имеются данные только для звезд с относительно сильными полями. Кроме того, измеренные величины Bs имеются только для медленных ротаторов SrCrEuтипа, потому что только в случае медленного вращения спектральные линии достаточно узкие, чтобы величину расщепления можно было надежно измерить. Для звезд Si, He-w, He-r величины Bs практически неизвестны. Поэтому в данном исследовании мы использовали средние квадратические значения магнитного поля < Be > (см. ниже), известные для многих звезд всех типов, которые затем перевели в значения средних поверхностных магнитных полей по полученной ниже статистической зависимости. Надо иметь в виду, что хотя к настоящему времени для многих звезд известны средние эффективные величины магнитного поля Ве, оценки поверхностных полей *Bs*, получаемые по статистической зависимости Bs-<Be>, отягощены значительными ошибками вследствие влияния ориентации звезд относительно наблюдателя.

Звезд с хорошо изученным химическим составом мало. Поэтому мы решили использовать параметры, которые его характеризуют. Известно, что одной из характеристик аномальности химического состава СР-звезд, является интенсивность депрессии в непрерывных спектрах на длине волны $\lambda =$ 5200 А. Эта интенсивность характеризуется либо параметром Δa [8], либо параметром Z женевской фотометрии (фильтр V1) [9]. Впервые зависимость Z от среднего поверхностного поля Bs была изучена в работе [10]. При помощи этого параметра были обнаружены новые магнитные СР-звезды. В принципе, можно было бы использовать для нашей цели и параметр Δa , но звезд с известными величинами Z значительно больше. Долгое время был неясен механизм происхождения полосы $\lambda =$ 5200 А. Многие придерживались той точки зрения, что это автоионизационные полосы SiII [11], другие полагали, что широкие полосы образуются при связанно-свободных переходах SiII [12]. Были также предположения, что это просто местное

скопление спектральных линий, усиленных из-за аномальности химического состава и наличия магнитного поля [13, 14]. Влияние поля проявляется зеемановским расщеплением спектральных линий. При малых значениях магнитного поля зависимость интенсивности депрессии от величины магнитного поля крутая. По мере усиления поля π и σ -компоненты спектральных линий разделяются настолько, что наступает насыщение и при дальнейшем увеличении поля глубины спектральных линий уже не растут, поэтому их зависимость от величины магнитного поля становится более пологой. В настоящее время принято именно это объяснение [15].

Таблица 1. Зависимость параметра Z от температуры для нормальных звезд V класса светимости

T_e K	Z	T_e K	Z
6000	-0.0405	19000	-0.0050
6500	-0.0400	19500	-0.0052
7000	-0.0375	20000	-0.0053
7500	-0.0325	20500	-0.0054
8000	-0.0210	21000	-0.0055
8500	-0.0130	21500	-0.0057
9000	-0.0090	22000	-0.0059
9500	-0.0070	22500	-0.0061
10000	-0.0060	23000	-0.0063
10500	-0.0052	23500	-0.0064
11000	-0.0047	24000	-0.0065
11500	-0.0045	24500	-0.0067
12000	-0.0040	25000	-0.0069
12500	-0.0040	25500	-0.0072
13000	-0.0038	26000	-0.0073
13500	-0.0038	26500	-0.0074
14000	-0.0038	27000	-0.0075
14500	-0.0038	27500	-0.0075
15000	-0.0040	28000	-0.0075
15500	-0.0042	28500	-0.0075
16000	-0.0044	29000	-0.0076
16500	-0.0045	29500	-0.0076
17000	-0.0046	30000	-0.0076
17500	-0.0047	30500	-0.0076
18000	-0.0048	31000	-0.0077
18500	-0.0049	32000	-0.0077

В отличие от предыдущих аналогичных исследований в этой работе мы изучаем зависимость от величины поля не самого параметра Z, а степени его аномальности Z0, что более корректно. Ее мы определили как $Z0 = Z_{CP} - Z_{HOPM}$. Таким образом, Z0 – это разница между величиной Z для СР-звезд и Z для нормальных звезд Главной последовательности той же температуры. Величины Z для нормальных звезд Главной последовательности разных температур приведены в табл.1. Температуры оценивались по спектральному классу с помощью зависимости из работы [16]. На зависимости Z - Te среднее рассеяние величин Zв области Те ≈ 8000 K равно $\pm 0.010 - 0.015$, а в области Te > 10000 K - ±0.005. Чем больше величина депрессии λ 5200 Å, тем больше абсолютная величина Z0. Поэтому на всех графиках в дальнейшем указывается |Z0|.

Параметр Z зависит не только от магнитного поля, но и от температуры. Из-за этого увеличивается разброс точек на изучаемой зависимости. Поэтому звезды разных типов пекулярности изучались отдельно. На рис.1 приведена зависимость Z0 от степени аномальности химсостава ΔX . Величина ΔX – это превышение среднего содержания характерных химических элементов Si, Ca, Cr и Fe (log(N/N_{tot})) у Si- и SrCrEu-звезд относительно нормальных звезд Главной последовательности той же средней температуры. Все необходимые данные для этого взяты из работы [17] и приведены в табл. 2. На рис.1 хорошо видно, что зависимость действительно существует, линейная регрессия имеет вид

$$\Delta \mathbf{X} = (0.42 \pm 0.12) - (15.34 \pm 4.05) \cdot \mathbf{Z}0.$$
(1)

Это подтверждает мнение, что параметр Z, связанный с интенсивностью депрессии $\lambda = 5200$ Å, чувствителен к химическим аномалиям.

То, что имеется связь между ΔX и Δa , видно из рис.2, построенного по данным для Δa из работ [18–20]. Зависимость между этими величинами можно выразить в виде полинома

 $\Delta X = 0.28 + 18.67 \cdot \Delta a - 58.06 \cdot \Delta a^2.$

Чем сильнее магнитное поле, тем оно эффективнее подавляет микротурбуленцию, облегчая диффузию химических элементов, и усиливает лучевое давление. Вероятно, этот процесс приводит, вопервых, к неравномерному распределению химических элементов по поверхности и, во-вторых, к увеличению концентрации определенных химических элементов. Ранее мы исследовали зависимость Zот степени пекулярности содержания разных химических элементов и нашли, что такая зависимость

Габлица 2. Параметры 20, характеризующие ин-
тенсивность депрессии $\lambda5200$ Å, и ΔX , характе-
ризующие степень химических аномалий

Звезда	Тип	Te, K	Z0	ΔX
10221	Si+	11900	-0.023	+1.39
18610	SrCrEu	8100	-0.024	+1.01
24712	SrCrEu	7250	-0.010	+0.03
25823	Si	12750	-0.027	+0.93
29578	SrCrEu	7800	-0.021	+0.78
37808	Si	13100	-0.020	+0.71
40312	Si	10450	-0.013	+1.54
43819	Si	11300	-0.032	+0.87
60435	SrCrEu	8100	-0.032	+0.60
62140	SrCrEu	7900	-0.039	+0.74
66318	SrCrEu	9200	-0.059	+1.15
75445	SrCrEu	7700	0.000	+0.29
101065	SrCrEu	6600	-0.016	-0.36
108662	SrCrEu	10300	-0.034	+1.25
108945	SrCrEu	8800	-0.018	+0.31
110066	SrCrEu	9000	-0.052	+1.55
112413	SrCrEu	11600	-0.028	+0.77
115708	SrCrEu	7510	0.022	+0.06
116114	SrCrEu	8000	-0.031	+0.46
128898	SrCrEu	7900	-0.004	+0.36
133029	Si+	11200	-0.054	+1.14
133792	SrCrEu	9200	-0.028	+0.95
137909	SrCrEu	8000	-0.004	+0.86
137949	SrCrEu	7550	-0.004	+0.56
153882	SrCrEu	9250	-0.037	+1.75
166473	SrCrEu	7700	-0.026	+0.47
168733	SrCrEu	14000	-0.020	+0.88
170973	Si+	10750	-0.041	+1.01
176232	SrCrEu	7550	-0.029	+0.58
183806	SrCrEu	10070	-0.021	+1.44
188041	SrCrEu	8500	-0.053	+1.09
192913	Si+	10900	-0.029	+0.88
201601	SrCrEu	7700	-0.014	+0.35
204411	Si+	8400	-0.012	+0.75
203932	SrCrEu	7450	0.002	+0.36
212385	SrCrEu	9200	-0.025	+0.97
217522	Si+	6750	-0.023	-0.18

Рис. 1. Зависимость между степенью аномальности параметра женевской фотометрии Z0 и степенью аномальности химсоства ΔX .

действительно существует, но со значительным разбросом точек [21]. Было также показано, что в первом приближении прямая корреляция имеет место в основном от Bs=0 до Bs~4-5 кГс. В работах [1, 22] показано, что от магнитного поля зависит также степень аномальности бальмеровских скачков. В работе [23] мы исследовали зависимость между аномальностью бальмеровского скачка ΔD и магнитным полем Bs, а также связь параметра Z со степенью пекулярности содерждания химических элементов. Величина бальмеровского скачка в свою очередь зависит от аномальности химсоства. Таким образом, мы убедились, что выбранный нами параметр Z0 можно использовать как меру химической аномальности (иными словами, меру "металличности").

3. ЗВЕЗДЫ С ИЗМЕРЕННЫМИ ВЕЛИЧИНАМИ Bs

В настоящее время известно около ста СРзвезд с измеренными по зеемановскому расщеплению линий средними поверхностными магнитными полями *Bs*. Данные для этих звезд представлены в табл.3. Величины Bs взяты из каталога [24], *Bs*(P) из работы [25]. В четвертом столбце даны *Bs*(G), оцененные по формулам Стиббса-Престона в работе [21] для звезд с известными фазовыми зависимостями изменений магнитного поля Be(P). В 5 столбце даны значения температур, в шестом параметры *Z*0. Все величины *Z* и для нормальных, и для пекулярных звезд вычислены по соответствующей формуле из работы [9] по данным каталога [26].

Рис. 2. Зависимость между степенью аномальности химсостава ΔX и интенсивностью депрессии $\lambda 5200 - \Delta a$.

SrCrEu-звезды. Зависимость Z0-(Bs) для этих звезд представлена на рис.За. Чтобы уменьшить разброс точек, проведено усреднение методом скользящего среднего по 5 точкам. В работе [10] утверждается, что между величинами Z и Bs существует линейная зависимость в интервале $0 \le Bs \le 3.5$, однако наши результаты, представленные ниже, этого не подтверждают. Средняя кривая построена способом наименьших квадратов в виде экспоненты:

$$Z0 = -f(1 - e^{-gBs}),$$
 (2)

где f=0.048 и g=0.45. Из-за сильного разброса точек трудно сделать заключение о точной форме зависимости особенно в области малых величин *Bs* и *Z*0. Из результатов, приведенных далее, получается, что зависимость не линейная, а представляет собой некоторую кривую, близкую к экспоненте, которая тем круче, чем меньше магнитное поле. В то же время использование измеренных величин Bs не обеспечивает получение достаточно надежной зависимости вследствие большого разброса точек. Кроме того, данных вблизи малых значений Bs, которые нам наиболее интересны, нет.

Звезды типа Si. Зависимость Z0-(Bs) для звезд этого типа представлена на рис.3b. Как и в предыдущем случае, значения получены в результате усреднения методом скользящего среднего по 5 объектам. Звезд Si-типа пекулярности значительно меньше но зависимость для них получилась более плавной, чем в случае SrCrEu-звезд. Но если предположить, что при Bs = 0 значение Z0 тоже равно нулю, то при малых Bs зависимость

Рис. 3. Зависимость степени аномальности параметра Z0 от величины среднего поверхностного магнитного поля Bs: (a) Si+ и SrCrEu-типы звезд; (b) Si-звезды.

Рис. 4. Зависимость между среднеквадратическими <*Be>* и средними поверхностными *Bs* величинами магнитного поля.

будет иметь очень крутой ход. На рисунке кривая проведена методом наименьших квадратов в соответствии с формулой (2). Здесь коэффициенты f=0.061 и g=0.3. Видно, что на малых Bs, если продолжить зависимость до Bs = 0, она пересечет ось Z0 на уровне ~ 0.02, но не на 0, как это можно было бы предположить. Вероятно, здесь играет роль эффект селекции, по крайней мере частично, когда звезду относят к CP- звездам только в случае хорошо заметных признаков пекулярности. Поэтому звезды со слабыми химическими аномалиями оказываются в дефиците. Этот эффект больше при слабых полях и слабых аномалиях, что искажает зависимость в этой области. Иначе придется предполагать, что часть СР-звезд не обладает магнитным полем.

Для звезд с аномальными линиями гелия аналогичные зависимости построить не удалось из-за отсутствия данных по *Bs*.

4. ЗВЕЗДЫ С ВЫЧИСЛЕННЫМИ ВЕЛИЧИНАМИ Bs

Примерно для ста СР-звезд известны средние поверхностные магнитные поля Bs. Кроме того, надо иметь в виду, что порог измерения среднего поверхностного поля составляет 2.5-3 кГс. Количество звезд с известными средними эффективными магнитными полями Ве порядка 300 и нижняя граница их обнаружения существенно меньше. Поэтому было решено исследовать изменение параметров Z0 с использованием Bs, полученных по зависимости Be-(Bs). Как уже говорилось выше, среднее эффективное поле зависит от ориентации звезды относительно наблюдателя, потому что Ве - это компонента поля вдоль луча зрения, переменная вследствие вращения, а у разных звезд разный угол наклона. Поэтому всегда Be < Bs. Ранее мы показали [21], что в некоторых случаях эффективно использование в статистических исследованиях так называемых средних квадратических величин магнитного поля, введенных в практику в работе [27]:

$$\langle Be \rangle = [\sum (Be_i^2 - \sigma_i^2)/N]^{1/2},$$
 (3)

где N — количество измерений, сделанных в разных фазах периода вращения, σ_i — среднеквадратическая ошибка одного измерения. К настоящему времени количество измеренных Ве достигло

Рис. 5. Зависимость степени аномальности Z0 от среднего поверхностного магнитного поля Bs, определенного по соотношению $Bs - (\langle Be \rangle)$: (a) Si+ SrCrEu типы звезд; (b) Si+ SrCrEu типы звезд, но вместо Z0 взяты Δa ; (c) Si - звезды; (d) звезды с аномальными линиями гелия.

уже 300 [28], и мы использовали данные из этого списка. Для разных звезд измеренная величина Ве находится в основном в пределах 30 – 100 Гс, следовательно, величина среднего поверхностного поля будет в таких случаях в пределах 150 – 500 Гс в соответствии с формулой (4), т.е. минимальная величина *Bs* в среднем во много раз меньше, чем величина, которую возможно непосредственно измерить. Используя величины <Be>, мы можем существенно расширить исследуемые зависимости в сторону малых значений магнитного поля. Если <*Bs*> = 0, то это означает, что величина измеренного магнитного поля меньше ошибки измерений. Все необходимые данные приведены в табл.4.

Таблица 3. Данные для построения зависимости Z0-(Bs) для Bs, определенных по расщеплению спектральных линий (даны в килогауссах)

-							
_	HD	Bs	Bs(P)	Bs(G)	Te, K	Z0	Тип
_	2453	3.7	-	-	8500	-0.053	SrCrEu
	5737 -	-	-	1.2	13500	-0.001	He-w
	5797	-	1.8	-	9400	-0.041	SrCrEu
	8441	-	0.0	-	9100	-0.010	SrCrEu
	9996	4.8	-	-	10000	-0.035	SrCrEu
	10221	-	-	10700	-0.023	Si+	
_	12288	7.9	-	-	8600	-0.042	SrCrEu

Таблица 3. (Продолжение)

HD	Bs	Bs(P)	Bs(G)	Te, K	Z0	Тип
12447	-	-	2.0	10000	-0.030	Si+
12767	-	-	0.8	13000	-0.020	Si
14437	7.7	-	-	10800	-0.064	SrCrEu
18078	3.8	-	-	9000	-0.066	SrCrEu
18296	-	-	0.8	11000	-0.027	Si+
22374	-	0.5	-	8400	-0.011	SrCrEu
24712	2.6	-	2.8	7200	+0.010	SrCrEu
25267	-	-	1.3	12100	-0.030	Si
27309	-	-	-	11800	-0.055	Si
29578	2.7	-	-	9000:	-0.035	SrCrEu
32633	-	-	14.0	12700	-0.062	Si+
34452	-	-	2.3	14100	-0.052	Si
37017	-	-	7.9	20100	0.000	He-r
37479	-	-	11.8	22500	0.000	He-r
37776	80	-	-	23400	+0.001	He-r
40312	-	-	0.7	10100	-0.013	Si
49976	-	-	4.0	9200	-0.035	SrCrEu
51418	-	-	1.7	9500	-0.035	SrCrEu
55719	6.5	-	-	8900	-0.025	SrCrEu
59435	3.2	-	-	9000	-0.058	SrCrEu
61468	7.3	-	-	9000	-0.059	SrCrEu
62140	-	-	3.5	10000	-0.039	SrCrEu
64740	-	-	6.8	23800	-0.042	He-r
65339	12.8	-	12.5	10000	-0.051	SrCrEu
70331	12.4	-	-	11000	-0.058	Si
71866	-	-	7.2	8600	-0.043	SrCrEu
72968	2.8	-	-	9600	-0.033	SrCrEu
75445	3.0	-	-	9000	-0.025	SrCrEu
78316	-	-	3.0	13200	-0.004	HgMn?
81009	8.4	7.9	-	9900	-0.037	SrCrEu
93507	7.2	-	-	11000	-0.060	Si+
94660	6.2	-	-	11600	-0.067	Si+
108662	-	-	3.4	9900	-0.034	SrCrEu
110066	4.1	-	-	8700	-0.052	SrCrEu
111133	-	3.7	3.2	9700	-0.053	SrCrEu
112413	-	2.9	3.2	11200	-0.028	Si+

Таблица 3. (Продолжение)

HD	Bs	Bs(P)	Bs(G)	Te, K	Z0	Тип
116114	5.9	-	-	9000	-0.031	SrCrEu
116458	4.6	-	-	9500	-0.049	He-w?
118022	-	2.9	2.9	9000	-0.043	SrCrEu
119213	-	-	3.0	9800	-0.025	SrCrEu
120198	-	-	-	9700	-0.032	SrCrEu
124224	-	-	3.1	12500	-0.016	Si
125248	-	-	4.9	9400	-0.036	SrCrEu
125823	-	-	2.2	19500	+0.04	He-w-r
126515	12.3	-	-	9200	-0.048	SrCrEu
133029	-	-	6.8	10500	-0.054	Si+
134214	3.1	-	-	9000:	-0.024	SrCrEu
137909	5.5	-	4.3	7400	-0.004	SrCrEu
137949	4.6	-	4.6	7000	-0.004	SrCrEu
142070	4.9	-	-	9000:	-0.042	SrCrEu
142990	-	-	4.0	17800	-0.004	He-w
144334	-	-	2.0	15400	-0.015	He-w
144897	9.0	-	-	9000	-0.074	SrCrEu
147010	-	-	13.0	13000	-0.072	Si+
148112	-	-	0.8	9200	-0.027	SrCrEu
150562	4.8	-	-	9000	-0.017	SrCrEu
152107	-	-	7.0	8700	-0.029	SrCrEu
153882	-	-	7.5	8900	-0.037	SrCrEu
164258	-	-	-	8100	-0.014	SrCrEu
165474	6.5	-	-	10000	-0.037	SrCrEu
166473	7.7	-	-	9000	-0.026	SrCrEu
170397	-	-	2.6	9400	-0.037	Si
175362	28.0	-	26.0	17000	-0.019	Si
176232	-	2.1	-	7600	-0.029	SrCrEu
177765	3.4	-	-	9000	-0.042	SrCrEu
187474	5.0	-	-	10300	-0.040	Si+
188041	3.6	-	-	10000	-0.053	SrCrEu
191742	1.8	-	-	7800	-0.026	SrCrEu
192678	4.7	-	3.8	9300	-0.080	SrCrEu
196502	-	2.0	2.1	8700	-0.032	SrCrEu
200311	8.6	-	-	13500	-0.041	HgMn?
201601	3.8	-	-	7600	-0.014	SrCrEu

HD	Bs	Bs(P)	Bs(G)	Te, K	Z0	Тип
204411	-	0.5	-	10200	-0.022	Si
208217	8.0	-	-	9000:	-0.041	SrCrEu
215441	34	-	39	15900	-0.052	Si
216533	-	-	-	8500	-0.035	SrCrEu
217833	-	-	-	15500	-0.018	He-w
221568	-	1.8	-	10600	-0.039	SrCrEu

Таблица 3. (Продолжение)

Таблица 4. Данные для построения зависимости *Bs*-(*Z*0) с *Bs*, определенными по зависимости

Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип
2453	358	2.1	-0.053	8400	SrCrEu
3980	1002	5.5	0.000	10200	SrCrEu
4778	601	3.3	0.000	9200	Si+
5737	182	1.0	-0.001	13500	He-w
5797	1850	10.2	-0.041	9400	SrCrEu
6532	244	1.3	-0.024	9000	SrCrEu
8441	56	0.3	-0.010	9100	SrCrEu
8855	642	3.5	-0.046	12900	Si+
9996	648	3.6	-0.035	10000	SrCrEu
10221	297	1.6	-0.023	10700	Si+
10783	1013	5.6	0.000	10200	SrCrEu
12288	1351	7.4	-0.042	8600	SrCrEu
12447	99	0.5	-0.030	11000	Si+
12767	148	0.8	-0.020	13000	Si
14392	0	0.0	-0.014	11800	Si
14437	1570	8.6	-0.064	10800	SrCrEu
15089	51	0.3	-0.020	8400	SrCrEu
15144	586	3.2	-0.018	8400	SrCrEu
17775	276	1.5	-0.049	9000:	SrCrEu
18296	224	1.2	-0.027	11000	Si+
19400	50	0.3	-0.014	12900	He-w
19805	800	4.4	-0.007	9800	He-w
19832	82	0.4	-0.017	12400	Si
19980	627	3.4	-0.031	9000:	SrCrEu
20283	0	0.0	-0.005	13000:	Si
21590	636	3.5	-0.042	12700	Si

Таблица 4. (Продолжение)

ę						
	Звезда	< <i>Be></i> , G	Bs, kG	Z0	Te, K	Тип
	22374	0	0.0	-0.011	8400	SrCrEu
	22401	118	0.6	0.001	10100	SrCrEu
	22470	324	1.8	-0.017	13500	He-w
	22920	148	0.8	-0.014	14400	He-w
	23408	290	1.6	0.002	12300	He-w
	24155	682	3.7	-0.019	13800	Si
	24712	632	3.5	-0.010	7200	SrCrEu
	25267	150	0.8	-0.030	12200	Si
	25823	198	1.1	-0.027	13000	Si
	27309	1153	6.3	-0.055	13000:	Si
	28843	105	0.6	-0.008	14500	He-w
	29009	11	60.5	-0.019	12700	Si
	29305	3	0.0	-0.003	11500	Si
	30466	1172	6.4	-0.069	10900	Si
	32549	0	0.0	-0.011	10200	Si
	32633	2498	13.7	-0.062	12700	Si+
	34452	309	1.7	-0.052	14100	Si
	35298	1833	10.1	-0.021	15200	He-w
	35456	870	4.8	-0.019	14000	He-w
	35502	1181	6.5	-0.011	15900	He-w
	35912	520	2.9	0.003	18400	He-r
	36313	575	3.1	-0.025	12400	Si
	36429	143	0.8	-0.002	16500	He-w
	36430	97	0.5	0.004	18400	He-r
	36526	1751	9.6	-0.027	15800	He-w
	36540	127	0.7	-0.021	15800	He-w
	36629	255	1.4	0.002	20300	He-w
	36668	539	3.0	-0.038	12500	He-w
	36916	450	5.4	-0.023	14700	He-w
	37017	1150	6.3	0.000	20100	He-r
	37043	0	0.0	0.005	32500	He-w
	37058	679	3.7	0.004	19200	He-w
	37129	0	0.0	0.000	17000:	He-w
	37140	53	0.3	-0.032	15100	Si+
	37151	0	0.0	0.003	12100	He-w
	37210	0	0.0	-0.023	12500	Si

Таблица 4. (Продолжение)

Таблица 4. (Продолжение)

Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип	Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип
37470	0	0.0	-0.013	11900	Si	83368	313	1.7	-0.037	10100	SrCrEu
37479	1506	8.3	0.000	22500	He-r	83625	0	0.0	-0.049	12000	Si
37642	1687	9.3	-0.038	14600	He-w,Si	89822	339	1.9	0.004	9800	Si+
37752	0	0.0	-0.015	16000	He-w	90044	365	2.0	-0.045	9800	Si+
37776	875	4.8	0.000	23300	He-r	90569	0	0.0	-0.026	9700	Si+
38104	148	0.8	-0.009	9000	SrCrEu	92664	624	3.4	-0.016	14500	Si
39317	190	1.0	-0.014	9800	Si+	93030	0	0.0	0.010	29600	He-r
40312	166	0.9	-0.013	10100	Si	93507	1886	10.4	-0.060	11000:	Si+
42616	382	2.1	-0.023	8400	SrCrEu	94660	2089	11.5	-0.067	10600	Si+
43810	15	0.1	-0.032	10800	Si	96446	856	4.7	0.003	23000	He-r
47777	75	0.4	0.001	21000	He-r	96616	0	0.0	-0.026	9000:	SrCrEu
49333	318	1.7	-0.006	16600	He-w	96707	350	1.9	-0.024	9000	SrCrEu
49606	359	2.0	-0.004	13800	He-w	96910	161	0.9	-0.057	11000	Si+
49976	1131	6.2	-0.035	9200	SrCrEu	98088	518	2.8	-0.031	7800	SrCrEu
50169	996	4.5	-0.064	9000	SrCrEu	103192	100	0.5	-0.013	11100	Si
51418	201	1.1	-0.035	9500	SrCrEu	103498	194	1.1	-0.043	9000	SrCrEu
51688	0	0.0	-0.002	13000	He-w	108662	419	2.3	-0.034	9900	SrCrEu
54118	776	4.3	-0.036	10200	Si	108945	224	1.2	-0.018	8900	SrCreu
55719	1134	6.2	-0.02	9000	SrCrEu	109026	247	1.3	-0.003	15500	He-w
56022	85	0.5	-0.015	9600	Si	110066	0	0.0	-0.052	8700	SrCrEu
58260	1989	10.9	0.004	19700	He-r	111133	664	3.6	-0.053	9700	SrCrEu
62140	1030	5.7	-0.039	10000	SrCrEu	112185	110	0.6	-0.007	9800	SrCrEu
63401	70	0.4	-0.010	13800	Si	112381	3157	17.4	-0.050	10000	Si+
64486	453	2.5	0.002	10200	Si	112413	905	5.0	-0.028	11200	Si+
64740	458	2.5	-0.042	23800	He-r	115708	521	2.9	0.023	7500	SrCrEu
65339	2765	-0.051	10000	SrCrEu		116114	1810	9.9	-0.031	9000:	SrCrEu
66255	50	0.3	0.002	12000:	Si	118022	583	3.2	-0.043	9000	SrCrEu
68351	0	0.0	-0.015	9600	Si+	119213	780	4.3	-0.025	9800	SrCrEu
70331	2635	14.5	-0.058	9000:	SrCrEu	119419	1314	7.2	-0.064	13000:	Si+
71866	1442	7.9	-0.043	8600	SrCrEu	120198	366	2.0	-0.032	9700	SrCrEu
72968	192	1.1	-0.033	9600	SrCrEu	120640	0	0.0	0.049	19100	He-r
73340	1425	7.8	-0.018	13000:	Si	120709	31	0.2	-0.002	16700	He-w
74521	709	3.9	-0.057	10600	SrCrEu	124224	248	1.4	-0.016	12500	Si
77350	580	3.2	0.004	9700	Si	125248	1210	6.6	-0.036	9400	SrCrEu
79158	446	2.4	-0.025	12800	He-w	125823	216	1.2	0.000	19500	He-w-He-r
81009	1194	6.6	-0.037	10000	SrCrEu	126515	1350	7.4	-0.048	9200	SrCrEu

Таблица 4.	(Продолжение)
------------	---------------

Таблица 4. (Продолжение)

Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип	Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип
126759	98	0.5	-0.007	13000	Si	145501	1004	5.5	-0.035	14600	He-w
128775	250	1.4	-0.054	13000	Si	146001	265	1.5	-0.008	13400	He-w
128898	321	1.8	-0.004	7600	SrCrEu	147010	3629	20.0	-0.072	13000	Si+
128974	0	0.0	-0.003	13000	Si	14705	38	0.2	-0.053	9000	SrCrEu
130158	80	0.4	-0.010	13000	Si	147890	0	0.0	-0.024	13000	Si
130559	878	4.8	0.013	8900	SrCrEu	148112	209	1.1	-0.027	9200	SrCrEu
130841	0	0.0	0.004	8200	SrCrEu	148199	652	3.6	-0.042	13000	Si
131120	0	0.0	0.003	18300	He-w	148330	149	0.8	-0.002	9500	Si+
133029	2101	11.5	-0.054	10500	Si+	148898	80	0.4	-0.007	8400	SrCrEu
133518	0	0.0	0.003	19500	He-r	148822	0	0.0	-0.050	10100	Si+
133652	916	5.0	-0.043	13300	Si+	149911	409	2.2	-0.026	7900	SrCrEu
133880	2173	17.0	-0.072	11300	Si	150035	200	1.1	0.005	7300	SrCrEu
134214	219	1.2	-0.024	9000	SrCrEu	150549	93	0.5	-0.017	12800	Si
134759	0	0.0	-0.015	10300	Si	151346	0	0.0	-0.027	14700	He-w
134793	105	0.6	-0.029	8300	SrCrEu	151965	2321	12.8	-0.030	14800	Si
135297	543	3.0	-0.022	9600	SrCrEu	152107	909	5.0	-0.029	9000	SrCrEu
135382	16	0.1	0.006	8900	SrCrEu	153882	1289	7.1	-0.037	8900	SrCrEu
136347	51	0.3	-0.043	11400	Si	162374	0	0.0	0.001	17300	He-w
136933	499	2.7	-0.036	13000	Si	164258	278	1.5	-0.014	8100	SrCrEu
137193	0	0.0	-0.038	13000	Si	164429	160	0.9	-0.043	10300	Si+
137509	605	3.3	-0.065	15000	He-w	165474	305	1.7	-0.037	9000	SrCrEu
137909	375	2.1	-0.004	7400	SrCrEu	166473	1925	10.6	-0.026	9000	SrCrEu
137949	1301	7.1	-0.004	7000	SrCrEu	168605	1179	6.5	0.001	13000	Si
139525	0	0.0	-0.018	12000	Si	168733	539	3.0	-0.020	13600	SrCrEu
140160	147	0.8	-0.016	9100	SrCrEu	170397	364	2.0	-0.037	9400	Si
140728	100	0.5	-0.028	9800	Si+	170973	247	1.3	-0.041	10700	Si+
141556	26	0.1	0.003	9000	SrCrEu	171586	285	1.6	-0.024	8600	SrCrEu
142301	1684	9.3	-0.017	16500	He-w	173650	50	0.3	-0.021	8900	Si+
142884	6	0.0	-0.017	14900	He-w,Si	175132	929	5.1	-0.073	10700	Si
142990	1049	5.8	-0.004	17800	He-w	175156	20	0.1	0.003	14600	He-r
143699	27	0.1	-0.003	16000	He-w	175362	3122	17.2	-0.019	17000	He-w, Si
144334	525	2.9	-0.015	15400	He-w	175744	0	0.0	-0.017	12800	Si
144661	224	1.2	-0.016	15000	He-w	176232	82	0.5	-0.029	7600	SrCrEu
144844	53	0.3	-0.010	12300	He-w	177410	0	0.0	-0.025	13700	Si
144897	1888	10.4	-0.074	9000	SrCrEu	177517	64	0.3	-0.006	11000	Si
145102	90	0.5	-0.012	10900	Si	179527	0	0.0	-0.011	11000	Si

Таблица 4. (Продолжение)

Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип
179761	241	1.3	0.003	12300	Si
183339	831	4.6	0.004	13900	He-w
184905	2013:	11:	-0.018	10800	Si+
186205	202	1.1	0.001	20100	He-r
187474	1344	7.4	-0.040	10300	Si+
188041	1824	10.0	-0.053	10111	SrCrEu
191742	364	2.0	-0.026	7800	SrCrEu
192678	1248	6.9	-0.080	9300	SrCrEu
192913	262	1.4	-0.029	10600	Si+
193756	226	1.2	-0.022	9000:	SrCrEu
196178	735	4.0	-0.027	13600	Si
196502	0	0.0	-0.032	8700	SrCrEu
200177	691	3.8	-0.051	10100	SrCrEu
200311	1053	5.8	-0.041	13500	Si
201601	397	2.2	-0.014	7600	SrCrEu
202627	0	0.0	-0.001	9600	Ар
203006	192	1.1	-0.038	10200	SrCrEu
203932	100	0.5	0.002	7300	SrCrEu
205087	146	0.8	-0.039	10800	Si+
206742	58	0.3	0.000	9700	Si
207840	770	4.2	-0.002	12000	Si
208095	4431:	24:	-0.011	11000:	Si+
209308	0	0.0	-0.031	13000:	Si
209339	0	0.0	-0.007	29500	He-r
209515	66	0.4	-0.003	9700	SrCrEu
209664	497	2.7	-0.020	13000:	Si
212454	0	0.0	0.000	14400	He-w
213871	0	0.0	-0.020	13000	Si
213918	1370	7.5	-0.037	15900	Si
215441	17351	95.4	-0.052	15900	Si
216533	462	2.5	-0.035	8500	SrCrEu
217522	270	1.5	-0.023	11000	Si+
217833	2952	16.2	-0.018	15500	He-w
218495	326	1.8	-0.020	9000:	SrCrEu
219749	588	3.2	-0.011	11000	Si
220825	21	0.1	-0.027	9700	Si+

Таблица 4. (Продолжение)

Звезда	< <i>Be></i> , G	<i>Bs</i> , kG	Z0	Te, K	Тип
221006	608	3.3	-0.017	13100	Si
221394	830	4.6	-0.020	9300	SrCrEu
221568	495	2.6	-0.039	10600	SrCrEu
221760	0	0.0	-0.013	8700	SrCrEu
223385	8	0.0	0.006	9600	SrCrEu
224166	0	0.0	-0.015	12300	Si
224801	936	5.1	-0.028	11800	Si+
224926	0	0.0	0.000	13400	He-w

В первую очередь мы нашли связь между <*Be*> и *Bs*. Зависимость между этими величинами показана на рис.4. Линия регрессии имеет следующий вид

$$Bs = (5.6 \pm 0.6)(\langle Be \rangle - (0.16 \pm 0.12)).$$
(4)

Из этой формулы видно, что прямая проходит практически через 0 с угловым коэффициентом 5.6, который равен 9σ . Разброс точек значительный, средняя ошибка Bs, вычисленного по этой формуле, может достигать 30%. Однако в статистических исследованиях использование <Be> оказывается достаточно эффективным. Иногда используют максимальные величины Be, которые наблюдаются у звезд при вращении. Зависимость максимальных значений Be(макс) от Bs оказывается очень близкой к вышеприведенной. Угловой коэффициент для нее равен (4.8 ± 0.5). Но звезд с известными Be(макс) мало, поэтому были использованы только <Be>.

Звезды SiSrCrEu- и SrCrEu-типа. Для большей достоверности получаемой зависимости Z0-(Bs) мы решили объединить эти два типа звезд. Все они находятся в достаточно узком диапазоне температур (7000 – 12000 К) и их количество достигает 110. Так же, как и раньше, мы усреднили величины Z0 и Bs методом скользящего среднего по 5-ти значениям. Полученная зависимость представлена на рис.5а. Как и ожидалось, зависимость Z0-(Bs) доходит практически до нулевой величины Bs. Хорошо заметно, что зависимость представляет собой плавную кривую. Теоретическая кривая проведена методом наименьших квадратов в виде (2) при коэффициентах f = 0.056 и q = 0.3. Снова представляет собой проблему ход зависимости вблизи нуля. Если мысленно провести среднюю кривую до оси ординат, то она пересечет ее при значении Z0 = -0.015. Это происходит либо потому, что в данном диапазоне химические аномалии резко

увеличиваются с ростом магнитного поля, либо сказывается влияние упомянутого выше эффекта селекции. Поэтому звезды со слабыми аномалиями при малых магнитных полях оказываются в дефиците и преобладают звезды с сильными аномалиями. Это означает, что реально может существовать много звезд с магнитным полем Be~100 G и с химическими аномалиями меньше предела обнаружения.

На рис.5b приведена такая же зависимость, но вместо Z0 взята непосредственно интенсивность Δa полосы $\lambda 5200$ Å. Точек значительно меньше, но ход зависимости подобен предыдущему.

Это еще раз подтверждает, что зависимость Z0-(Bs) можно использовать для отбора кандидатов с малыми химическими аномалиями и малыми полями в диапазоне Bs = 0 - 500 G. Дополнительными высокоточными зеемановскими измерениями можно уточнить величины слабых эффективных полей Be < 100 G.

Звезды типа Si. Количество кремниевых СРзвезд значительно меньше, чем SrCrEu-звезд, но форма зависимости на рис. 5с, по-видимому, такая же, как на рис.3b. Самая малая величина Z0 примерно равна -0.01 и зависимость тоже не доходит до нуля вследствие эффекта селекции.

Звезды с гелиевыми аномалиями. Параметры Z0 в среднем меньше по сравнению с двумя предыдущими случаями вследствие слабости спектральных линий, но можно полагать, что форма зависимости такая же (рис.5d), как во всех предыдущих случаях.

Параметр Z0 при Bs = 0 тоже не доходит до нуля.

5. ЗАКЛЮЧЕНИЕ

1. Из рассмотрения представленного материала видно, что зависимость аномальности химсостава от величины магнитного поля не имеет формы прямой линии до Bs = 5 kG, как предполагали Крамер и Медер [10]. У звезд всех типов пекулярности изучаемая зависимость в первом приближении имеет экспоненциальную форму (2). До $Bs \approx 3 - 4 \text{ kG}$ она относительно крутая, затем плавно переходит в более пологую.

2. В области малых величин магнитного поля рассматриваемая зависимость, по-видимому, искажена недостатком звезд с малым Z0 из-за эффектов селекции. Поскольку нормальные звезды не имеют ни магнитного поля, ни химических аномалий, то рассматриваемая зависимость должна проходить при Bs = 0 через Z0 = 0, а не через $Z0 \sim -0.010 \div -0.015$, как это видно на рисунках. Эффект селекции заключается в том, что звезду при классификации относили к СР-звездам по

величине химических аномалий, которые выявлялись по оценке интенсивностей характерных спектральных линий, если интенсивности были больше некоторой определенной величины. Обычно это делалось на глаз по спектрам с низкой дисперсией. Величина Z0=-0.015 соответствует увеличению среднего содержания характерных химических элементов примерно в 4 раза. Следовательно, в каталогах СР-звезд наблюдается избыток объектов с сильными аномалиями и недостаток со слабыми аномалиями. При данном поле степень аномалий варьируется в больших пределах вследствие рассмотренных выше причин.

Если предположить, что эффект селекции не играет большой роли, то придется допустить, что имеется много СР-звезд без магнитного поля и что кроме магнитного поля есть еще некоторый источник стабилизации атмосфер магнитных звезд, при которой возможен процесс диффузии. У звезд с очень слабым полем его влияние минимально, а наличие сильных химических аномалий говорит о том, что микротурбуленция у них достаточно слабая и без влияния магнитного поля. Например, наши исследования химсостава СР-звезд со слабыми магнитными полями (см. Введение) показали, что несмотря на слабость поля микротурбулентные скорости у них близки к нулевым значениям. Следовательно, у СР-звезд на диффузию химических элементов влияют два фактора - присущая им слабость микротурбуленции и величина магнитного поля, которое дополнительно способствует ослаблению микротурбуленции и увеличению светового давления.

3. Полученные зависимости Z0-(Bs) можно использовать для отбора объектов с малыми химическими аномалиями и малыми полями (это касается величин Z0 в области 0.00 - 0.025) и дает дополнительную возможность предварительного отбора слабо намагниченных звезд. Дополнительными зеемановскими измерениями можно уточнить величину эффективного поля. Полученные выше результаты позволяют предположить, что существует большое количество звезд с относительно большими, до $Bs \sim 500 - 1000$ G, полями, которые не отнесены к классу CP-звезд вследствие относительно слабой, ниже порога обнаружения, химической аномальности, и по существующей классификации они являются нормальными.

4. Рассмотренные зависимости несомненно указывают на явную связь между магнитным полем и химическими аномалиями. Однако встречаются примеры сильного отклонения от средних зависимостей. При построении рис.2 мы не нанесли данные для двух звезд: HD40312 и HD183806 с очень большими ΔX , чтобы не нарушать общий ход зависимости. У них $\Delta X = 1.54$ и 1.44 соответственно вследствие очень большого избытка Сг. Аномально высокое содержание отдельных химических элементов представляет собой проблему.

5. Сильное рассеяние точек на исследуемых зависимостях серьезно затрудняет выявление взаимосвязи разных характеристик магнитных СРзвезд. Полученные зависимости поэтому следует рассматривать как предварительные, которые необходимо уточнять по мере накопления новых данных.

6. В будущем мы собираемся обратить внимание на то, что необходимо уточнить, от каких именно химических элементов сильнее всего зависит параметр Z0, т.е. интенсивность депрессии $\lambda 5200$ Å у звезд разных типов пекулярности. Особенно это интересно потому, что у звезд с аномальными линиями гелия депрессии нет, а параметр Z0 оказывается чувствительным к магнитному полю (рис.5d).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ю. В. Глаголевский, Astronom. Zh. **71**, 858 (1994).
- Ю. В. Глаголевский, Астрофиз. исслед. (Изв. САО) 27, 34 (1989).
- 3. Ю. В. Глаголевский, Г. А. Чунтонов, Бюлл. Спец. астрофиз. обсерв. **45**, 105 (1998).
- Ю. В. Глаголевский, Т. А. Рябчикова, Г. А. Чунтонов, Письма в астрономический журнал 31, 363 (2005).
- 5. Ю. В. Глаголевский, И. Х. Илиев, И. Статева, Г. А. Чунтонов, Астрофизика **49**, 585 (2006).
- 6. Ю. В. Глаголевский, В. В. Леушин, Г. А. Чунтонов, Астрон. журн. (2007) (в печати).
- 7. Yu. V. Glagolevskij and F. G. Kopylova, in Hot CP and magnetic stars, Ed. by G.Scholz (Potsdam-Babelsberg, 1990) p.82.
- 8. H. M. Maitzen and A. E. Moffat, Astronom. and Astrophys. 16, 385 (1972).
- 9. N. Cramer and A. Maeder, Astronom. and Astrophys. 78, 305 (1979).
- N. Cramer and A. Maeder, Astronom. and Astrophys. Suppl. Ser. 41, 111 (1980).

- 11. D. M. Peterson, Astrophys.J. 161, 685 (1970).
- 12. S. J. Adelman and P. R. Walker, Astrophys. J. 207, 159 (1976).
- 13. R. B. Phylips, J. D. Fix and J. S. Neff, Astrophys. J. Lett. **202**, L145 (1975).
- 14. H. M. Maitzen and M. Muthsam, Astronom. and Astrophys. 83, 334 (1980).
- 15. S. Khan, O. Kochukhov and D. Shulyak, in The A-Stars Puzzle. Proc. IAU Symp. No224 (Cambridge Univ.Press, 2004), p.29.
- 16. V. Straizhis and G. Kuriliene, Astrophys. and Space Sci. **80**, 353 (1981).
- 17. Т. А. Рябчикова, Письма в астрон. журн. 31, 437 (2005).
- В. С. Лебедев, Астрофиз. исслед. (Извю САО) 21, 30 (1986).
- H. M. Maitzen, R. Pressberger and E. Pauntzen, Astronom. and Astrophys. Suppl. Ser. 128, 573 (1998).
- 20. H. M. Maitzen and M. Vogt, Astronom. and Astrophys. **123**, 48 (1983).
- Ю. В. Глаголевский, И. И. Романюк, Н. М. Чунакова, В. Г. Штоль, Астрофиз. исслед. (Изв. САО) 23, 37 (1986).
- Ю. В. Глаголевский, Г. А. Чунтонов, Астрофизика 45, 499 (2002).
- 23. Ю. В. Глаголевский, Г. П. Топильская, Астрофиз. исслед. (Изв. САО) **25**, 13 (1987).
- 24. I. I. Romanyuk, in *Magnetic fields of chemically* peculiar and related stars, Ed. by Yu. V. Glagolevskij and I. I. Romanyuk (Moscow, 2000), p.20.
- 25. G. Preston, Astrophys.J. 164, 309 (1971).
- 26. F. Rufener, in *Catalogue of Stars measured in the Geneva Observatory Photometric system* (Obs. de Geneve, 1988).
- 27. D. N. Brown, J. D. Landstreet and I. Thompson, in *Upper Main Sequence Chemically Peculiar Stars* (Universite de Liege, 1981), p.195.
- 28. V. D. Bychkow, L. V. Bychkowa, J. Madej, Astronom. and Astrophys. **407**, 631 (2003).

MAGNETIC-FIELD DEPENDENCE OF CHEMICAL ANOMALIES IN CP STARS

Yu. V. Glagolevskij

The dependence of the degree of anomaly of parameter Z of Geneva photometry ($Z0 = Z_{CP} - Z_{\text{norm.}}$) on the average surface magnetic field Bs is analyzed. The Z0 value is proportional to the degree of anomaly of chemical composition. It was found that $Bs \rightarrow 0$ corresponds $Z0 \rightarrow -0.010 \div -0.015$, i.e., part of CP stars are virtually devoid of magnetic field, but exhibit chemical anomalies. This effect may be due to selection whereby only objects with strong chemical anomalies are classified as CP stars, thereby producing a deficit of stars with relatively weak anomalies. Moreover, CP stars have other sources of stabilization of their atmospheres besides the magnetic field, e.g., slow rotation. Formulas relating Z0 to Bs are derived.